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Abstract. To understand and detect possible errors in programs manipu-
lating memory, static analyses of various levels of precision have been
introduced, yet it remains hard to capture both information about the
byte-level layout and precise global structural invariants. Classical pointer
analyses struggle with the latter, whereas advanced shape analyses incur a
higher computational cost. In this paper, we propose a new memory analysis
by abstract interpretation that summarizes the heap by means of a type
invariant, using a novel kind of physical types, which express the byte-level
layout of values in memory. In terms of precision and expressiveness, our
abstraction aims at a middle point between typical pointer analyses and
shape analyses, hence the lightweight shape analysis name. We pair this
summarizing abstraction with a retained and staged points-to predicates
abstraction which refines information about the memory regions that are in
use, hereby allowing strong updates without introducing disjunctions. We
show that this combination of abstractions suffices to verify spatial memory
safety and non-trivial structural invariants in the presence of low-level
constructs such as pointer arithmetic and dynamic memory allocation, on
both C and binary code.

1 Introduction

Memory errors have long been a very important concern for programmers, due to
the potential safety and security issues that they raise. In particular, programs that
perform low-level pointer and memory operations are particularly tedious to reason
about in languages like C/C++ or assembly. For instance, such patterns are very
common in system software, which makes its correct implementation challenging.

Many verification techniques aimed at verifying the correctness of memory
manipulating programs have been developed. In particular, several families of
automatic and conservative static analysis focus on such errors. Pointer analyses [35]
based on abstractions of aliasing relations [1] or access paths [10] infer basic
conservative relations between pointer values and can tackle basic memory errors.
However, they are of limited expressiveness, which implies they cannot establish
safety when doing so requires reasoning over structural invariance. On the other
hand, shape analyses based on three valued logics like TVLA [33] or on separation
logics [31] such as Infer [11] or Xisa [6] attempt to establish precise structural
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invariants such as the existence of some list or tree data-structures. Such analyses
can cope with the verification of memory safety in presence of sophisticated
structures, yet they are typically less scalable than basic pointer analyses and
also less resilient to a local precision loss in the sense that losing precision over a
fragment of the memory often entails no information can be recovered about that
region. Another limitation is that such analyses are difficult to apply to low-level
code, like low-level C or binary code, even though some abstractions have been
adapted to deal with some forms of pointer arithmetics [18,20]. Few analyses have
been aimed for a precision level that sits in between those two large classes, like
graph heap models [27], but these do not cope with a low-level memory description.

In this paper, we are interested in memory abstractions expressive enough to
verify type safety, i.e. the preservation of structural invariants expressed by types,
in non-trivial linked data-structure manipulations in both high- and low-level
code (such as assembly or low-level C). This type safety entails spatial memory
safety, namely that each memory access is done on an address that was previously
allocated (and thus that null or out-of-bound pointer dereferences are impossible).
We also seek for a high level of automation (i.e., by avoiding the requirement of
complex handwritten program annotations) and of efficiency.

To achieve this, we propose a novel memory abstraction that is inspired by
the classical notion of types, but applies to the physical representation of data-
structures (Section 4). Our abstract domain (Section 5) represents the heap in
a flow-insensitive way, which is less expressive than shape analyses, but allows
a simpler representation of abstract states and simpler, more efficient analysis
operations (Section 6). Combined with two independent extensions of the domain
to track “retained” and “staged” points-to predicates (Section 7), we show that the
combination naturally deals with both C and binary code manipulating dynamic
data structures (Section 8).

2 Overview example

We demonstrate the main features of our analysis on a low-level implementation of a
classical union-find structure inspired by Kennedy [17]. The representation combines
the union-find structure based on chains of pointers to class representatives in reverse
tree shapes with doubly linked-lists for efficient iteration over the elements of an
equivalence class. The whole code is presented in Figure 1. It is written in C for
the sake of readability, but we are interested in analysis techniques that would also
cope with the corresponding assembly code just as well. Structures uf and dll

respectively represent the union find and doubly linked list structures. Following
a pattern common in low-level and system code [3], the structure node comprises
both sub-structures uf and dll. Function uf_find returns the representative of
the class of an element and halves [36] the paths to the root to speed up subsequent
calls. Functions dll_union and uf_union respectively merge doubly linked-lists and
union-finds. Last, merge merges two node structures and make creates a new node.

Figure 2(a) displays an example concrete state, with a class made of three nodes
(and where the node at address 0x60 is the representative). Such states contain a
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1 typedef struct uf {

2 struct uf* parent;

3 } uf;

4 typedef struct dll {

5 struct dll *prev; /* != null. */

6 struct dll *next; /* != null. */

7 } dll;

8 typedef unsigned int node_kind;

9 typedef struct node {

10 node_kind kind; /* kind <= 5. */

11 struct dll dll;

12 struct uf uf;

13 } node;

14 uf *uf_find(uf *x) {

15 while(x->parent != 0) {

16 uf *parent = x->parent;

17 if(parent->parent == 0)

18 return parent;

19 x->parent = parent->parent;

20 x = parent->parent;

21 }

22 return x;

23 }

24 void dll_union(dll *x, dll *y) {

25 y->prev->next = x->next;

26 x->next->prev = y->prev;

27 x->next = y; y->prev = x;

28 }

29 void uf_union(uf *x, uf *y) {

30 uf *rootx = uf_find(x);

31 uf *rooty = uf_find(y);

32 if(rootx != rooty)

33 rootx->parent = rooty;

34 }

35 void merge(node *x, node *y) {

36 dll_union(&x->dll, &y->dll);

37 uf_union(&x->uf, &y->uf);

38 }

39 node *make(node_kind kind) {

40 node *n = malloc(sizeof(node));

41 n->kind = kind;

42 n->dll.next = &n->dll;

43 n->dll.prev = &n->dll;

44 n->uf.parent = NULL;

45 return n;

46 }

Fig. 1. An algorithm for union-find and listing elements in a partition.

very high degree of sharing due to the interleaved union-find and doubly-linked list
structures. Moreover, these structures are unbounded. Therefore, pointer analysis
techniques would require tricky and ad hoc adaptations regarding sensitivity to be
precise, so as to divide heaps in regions of pointers with similar properties; these
techniques are too imprecise to verify type or memory safety for C or assembly.
In the same time, shared data structures such as union-find are notoriously hard
to handle for shape analysis abstractions and we are not aware of any successful
shape analysis based verification for a structure similar to that of Figure 1.

Our key contribution is to propose an abstract interpretation framework based
on a semantic interpretation of physical types, that simultaneously verifies the
preservation of type-based structural invariants, and uses these invariants to
perform and improve the precision of the analysis. This contrasts with the usual
method where syntactic type checking and type-based pointer analyses are separate
analyses, each insufficiently precise to verify type safety for low-level languages like
C or binary. The type-based structural invariant implies dividing the heap into
partitions, which are attached flow-insensitive information, allowing for efficient
static analysis operations. To further improve precision, our analysis is strengthened
by flow-sensitive points-to predicates, whose effect is comparable to materialization
in shape analysis, but the memory summary is provided by the type-based structural
invariants. In this section, we informally present the basic predicates of our analysis.
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0 1 2

0x0

0x20 : 0x60 : 0x80 :

(a) Concrete state.

M : node kind 7→ {x : word4 | x ≤ 5}
uf 7→ uf.(0)∗
dll 7→ dll.(0)∗ 6=0 × dll.(0)∗ 6=0

node 7→ node kind× dll× uf

(b) Physical types.

x

y

(α, node.(0)∗ 6=0)

(β, node.(0)∗ 6=0)

α 6= 0

β 6= 0

(c) Analysis of merge.

∀ν, ∀(σ, h,L, Γ ) well-typed state, ∀v value :
v ∈ L node.(0)∗ 6=0 ML,ν =⇒ v + 4 ∈ L node.(4)∗ 6=0 ML,ν (1)

L node.(4)∗ 6=0 ML,ν ⊆ L dll.(0)∗6=0 ML,ν (2)
v ∈ L dll.(0)∗ 6=0 ML,ν =⇒ h[v..v + 4] ∈ L dll.(0)∗ 6=0 ML,ν (3)

L uf.(0)∗ 6=0 ML,ν ∩ L dll.(0)∗6=0 ML,ν = ∅ (4)

(d) Some structural invariants entailed byM

Fig. 2. Concrete and abstract states based on physical types.

Let us examine the types and structural invariants on our example code. The types
are given in Figure 2(b). They must be provided by the analysis user, and possibly
derived in part from the C types, although they express stronger invariants. Note that
our analysis is independent from C typing rules; in particular C is not type-safe, while
we can verify type-safety on both C and compiled programs. Intuitively, dll.(0)∗6=0

denotes a non-null pointer to the base address of another, well-formed dll instance.
In the case of uf, the parent pointer may be null, hence the subscript ∗6=0 is absent.
Finally, type node_kind is a type refined with a predicate restraining its possible
values: it corresponds to 4-byte bit vectors whose unsigned value is lesser than 5. Thus,
these types can be more precise than C types, although C types can be translated to
our type language. But they are less precise than shape invariants, as they cannot
represent the relation between different elements of a same type: our dll structure
could e.g. represent a binary tree with leaves pointing to the root.

These types entail structural invariants, some of which are presented in Fig. 2(d),
that a well-typed state must fulfill. These invariants relate types, interpreted as sets
of values: L t ML,ν represents the set of values for type t. Equation (1) relates adjacent
addresses; Equation (2) describes a subtyping relationship; Equation (3) relates the
type of an address with its contents; and Equation (4) describes a partitioning of
the heap in distinct regions. Note that the correctness of these invariants implies
that the memory layout of the heap must be compatible with these equations (as is
Figure 2(a)), which is why the interpretation of types depends on the heap layout L.

We now turn our attention to our abstract domain. The abstract state shown in
Figure 2(c) represents the initial state when execution of the merge function begins
(this function requires that it is given non-null pointers to node as arguments). Each
variable is associated to both an abstract type describing possible values stored in
the variable, and to a symbolic variable used to attach numerical constraints to
this value. For instance, variable x is bound to physical type node.(0)∗6=0, meaning
that its value belongs to L node.(0)∗6=0 ML,ν ; furthermore it is bound to symbolic
variable α which is constrained to be not null. Combined with structural invariants
of Equations (1),(2) and (3), we can verify that x+4 (the low-level counterpart of
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x (α, uf.(0)∗) parent (β, uf.(0)∗) (δ, uf.(0)∗) α 6= 0 ∧ β 6= 0 ∧ δ 6= 0

Fig. 3. Abstract state before line 19.

&x->dll) points to a valid address, that can be safely casted as type dll.(0)∗6=0,
and that reading from this address will return a value that also has type dll.(0)∗6=0.
Eventually, using these invariants we can verify that all memory accesses performed
by the call to dll_union are valid, but also that each statement preserves these
structural invariants.

However, this approach does not suffice when considering more complex func-
tions, like uf_find. First, we remark that the function may run correctly only
when argument x is non-null due to the dereference at line 15, although the uf

physical type does not require pointers to parent be non-null. Therefore, the verifi-
cation of this function will use semantic information coming from the numerical
abstract domain. Next, we observe that to prove the validity of the access to
parent->parent at line 17, the analysis needs to establish that parent is non-null,
by observing that it is equal to x->parent, which is non-null due to the condition
at line 15. Such reasoning cannot be performed solely using a combination of types
and numerical predicates, because the type-based invariants cannot attach different
information to different heap objects of the same type. Therefore, we augment
variable-type predicates with additional boxes, also defined with a symbolic variable
and a physical type, but that corresponds to some selected heap addresses. Only
boxes that are reachable from a variable finite chain of points-to predicates may
be retained this way. Figure 3 shows the abstract state at line 19 that enables
to proves the parent->parent access. In the following, we call such predicates
retained points-to predicates. Such predicates are obtained by retaining information
about recent memory writes, loads, or condition tests and need to be abstracted
away as soon as they cannot be proved to be preserved. Indeed, when the analysis
encounters a memory write, it drops all such boxes for which the absence of aliasing
cannot be established with the current information; some aliasing information
(e.g. Equation(4)) comes from the partitioning of the heap. This process will be
referred to as blurring as it carries some similarity with the blurring encountered
in some shape analyses. Note that the retained points-to predicates offer a very
lightweight way to keep some memory cells represented precisely without resorting
to unfolding/focusing which is generally more costly (but also more powerful in the
logical point of view), as retaining a heap address or blurring it does not require
modifying the summarized heap representation. Physical types coupled with re-
tained points-to predicates allow to verify memory safety and typing preservation
for the four functions dll_union, uf_find, uf_union and merge.

Finally, we consider function make. For the sake of simplicity, we assume that
malloc always returns a non-null pointer. We note that variable n does not point
to a valid node object until the very end of the function, thus attempting to prove it
satisfies physical type node.(0)∗6=0 before that point will fail. In general, some code
patterns like memory allocation or byte-per-byte copy temporarily do not preserve
the structural invariants described by our types. To alleviate this, we augment our
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stmt ::= x := expr (x ∈ X)
| ∗`expr := expr (` ∈ N)
| x := malloct(expr) (x ∈ X, t ∈ T)
| skip | stmt ; stmt
| if expr then stmt else stmt end
| while expr do stmt done

expr ::= c (c ∈ V)
| x (x ∈ X)
| expr � expr

(� ∈ {+,−,×, /,≤, <,
=, 6=,&, |, · · · })

| ∗`expr (` ∈ N)

Fig. 4. Language Whilemem

abstraction with a notion of staged points-to predicates that represent precisely
the effect of sequences of store instructions such as the body of make, allowing to
delay their abstraction into types at a later point.

The abstractions sketched so far may also be applied to binary code provided
type information can be recovered from, e.g., debugging information. In the rest of
the paper, we describe more precisely physical types in Section 4 whereas retained
points-to predicates and buffered write predicates are formalized in Section 7.

3 Language and semantics

Although our analysis was implemented both for C and binary code, we adopt
a simple imperative language for the sake of presentation. As the grammar in
Figure 4 shows,Whilemem features basic assignments, usual arithmetic expressions,
memory allocation, and standard control flow commands. Memory locations include
a finite set of variables X and addresses A that can be computed using usual pointer
arithmetic operations. The analysis is parameterized by the choice of an application
binary interface (or ABI) that fixes endianness, basic types sizes and alignments.
In the following, we assume a little-endian ABI is fixed and letW denote the size of
words. Memory access patterns of C can be translated into Whilemem; for instance,
assuming a pointer size of 4 bytes, x->prev turns into ∗4(x + 4). We leave out
functions, that our analysis handles in a context sensitive manner. We assume that
instances of malloc are marked with a type t, though we define the set of types in
Section 4.

The values manipulated by Whilemem are bit vectors, i.e., non-negative integers
as fixed-size sequences of bytes, so the set of values V is defined by:

V = {(`, v) | ` ∈ N, v ∈ [0, 28` − 1]}

If n > 0, we let Vn denote the set of bit vectors of length n. We extend the binary
operator notation to bit vectors of the same byte length, i.e., (`, v1) � (`, v2) means
(`, v1 � v2). The concatenation of any two bit vectors x and y is denoted x :: y
and is defined by (`1, v1) :: (`2, v2) = (l1 + l2, v1 + 28`1v2). The set of addresses
A is a subset of VW . As usual, we let stores map variables to their contents (thus,
� = X → V) and heaps be partial functions from addresses to their contents
(H = A⇀ V1). Moreover, the set of states is S = �× H.

Given a heaph ∈ H, a ∈ A, and ` ∈ N, we leth[a..a+`] denote the reading of a cell
of size ` at address a. It is defined by h[a..a+`] = h(a) :: h(a+1) :: · · · :: h(a+`−1).
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We denote by σ[x← v] the store σ with x now mapped to v, and by h[a..a+ `← v]
the heap h with values at addresses a (included) to a+ ` (excluded) replaced with
the bytes from v. Finally, dropping a range of mappings from a heap is noted
h[a..a+ `← ⊥].

The semantics of the language is given by a transition relation→∈ (stmt×S)×
(stmt×S) whose definition is standard (and given in Appendix A). We letΩ denote
the state after a run-time error (such as division by zero or null pointer dereference),
andEJeK : S→ V×{Ω}denote expression evaluation. Last, to express the soundness
of the analysis, we define a collecting semantics as follows. Given a program p, the
semantics JpK : P(S)→ P(S) maps a set of input states into a set of output states
and is such that (σ′, h′) ∈ JpK(S) if and only if there exists (σ, h) ∈ S, and a sequence
of transitions (p, (σ, h))→ (p1, (σ1, h1))→ . . .→ (pn, (σn, hn))→ (skip, (σ′, h′)).

4 Physical representation types

In this section, we formalize physical representation types (or, for short, physical
types) and a typed semantics, that serve as a basis for our analysis. The core idea
here is to define a notion of well-typed state which will be used as the base invariant
representing the summarized regions of memory.

Definition. As shown in Section 2, physical representation types are aimed at
describing the memory layout of memory regions using predicates inspired by the
standard types, but extended with additional properties. Therefore, the set of
physical types comprise standard types for the representation of not only base
values, but also structures and arrays. Moreover, they attach to each pointer
variable not only the type of the structure that is pointed but also the offset in the
block and information about the possible nullness of the pointer.

In order to describe additional constraints such as array indexes, physical types
may be refined [15,32] with numerical constraints, that may bind not only the cor-
responding value, but also existentially quantified symbolic variables (representing
e.g. the unknown size of an array). To this effect, we let V] = {α0, α1, . . .} denote a
countable set of symbolic variables. Moreover, the concretization of types needs to
reason over the actual value of symbolic variables. Such a realization of symbolic
variables to values is called a valuation and is usually noted ν : V] → V.

Finally, the analysis is parameterized by a fixed set of type names N , and a
mappingM ∈ N → T binding type names to types. Type names have two uses:
first they break cycles in the definition of recursive types; second they distinguish
types otherwise structurally equal (i.e. it allows the type system to be nominal),
and in particular pointers to two structurally equal types with different names will
not alias. For instance, in Section 2, we considered recursive types dll and uf, and
Figure 2(b) gives an example of a mappingM.

Definition 1 (Physical representation types). The set T of physical repre-
sentation types is defined by the grammar in Figure 5.
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predexpr(x) ::= x (constrained type variable)

| c (constant c ∈ V) | α (symbolic variable α ∈ V])
| predexpr(x) � predexpr(x) (binary op., � ∈ {+,−,×, · · · })

pred(x) ::= predexpr(x) ./ predexpr(x)(comparison, ./∈ {≤, <,=, 6=}
| ¬pred(x) | pred(x) ∧ pred(x)

T 3 t ::= wordn (base type of size n bytes)
| n (named type with type name n ∈ N )
| ta∗ (possibly null pointer)
| ta∗ 6=0 (non-null pointer)
| t× t (product type)
| {x : t | pred(x)} (type with a refinement predicate)

| t[s] (array type, s ∈ N ∪ V])

TA 3 ta ::= t .(k) (address type with offset, k ∈ N)

Fig. 5. Definition of physical representation types.

Note that, a type refined by a predicate makes use of a local variable x that
denotes the value of this type and is meant to be constrained in the matching
pred(x) predicate, which is why grammar entries predexpr(x) and pred(x) take a
variable as parameter. An address type t.(k) ∈ TA represents the k-th byte in a
value of type t. Finally, the pointer types ta∗ and ta∗6=0 respectively account for the
possibly null and definitely non-null cases. Thus, t.(k)∗6=0 should be interpreted as
the address of the k-th byte of a value of type t and t.(k)∗ represents the same set
of values, with the addition of the value 0.

Example 1 (Doubly linked-lists and structures). Based on Definition 1, the fact
that a dll object boils down to a pair of non-null dll pointers can be expressed
by the type dll.(0)∗6=0 × dll.(0)∗6=0. We also remark that padding bytes added in
structures to preserve field alignments can be added using . . .× wordk.

Before we can formally define the denotation of types, we need to introduce a few
notions. As usual in languages like C, we can compute the size of the representation
of a type. Since arrays may not be of a statically known size, the size may depend
on the actual value of symbolic variables, hence it needs to be parameterized by a
valuation ν. Then, size is computed by the function sizeν : T→ N defined by:

sizeν(wordn) = n
sizeν(ta∗) = sizeν(ta∗6=0) =W

sizeν({x : t | p(x)}) = sizeν(t)

sizeν(t1 × t2) = sizeν(t1) + sizeν(t2)

sizeν(t[s]) =

{
s · sizeν(t) if s ∈ N
ν(s) · sizeν(t) if s ∈ V]

Memory labeling. Physical types are aimed at describing not only variables like
standard types do, but also memory locations. To formalize this, we introduce
labelings as mappings from addresses to physical types.

Definition 2 (Labeling). A labeling is a function L : A → TA such that each
tagging of a region with a type is whole and contiguous, i.e., for all types t ∈ T, for
all addresses a ∈ A, if we let n = sizeν(t), and if there exists k ∈ [0, n− 1] such that
L(a+ k) = t.(k), then:

L(a) = t.(0) ∧ L(a+ 1) = t.(1) ∧ . . . ∧ L(a+ n− 1) = t.(n− 1)
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We extend this notion by letting labelings return a type: if L(a) = t, then it
should satisfy the above property. Moreover, we let L denote the set of labelings.
Intuitively, L(a) = t means both that a points to a value of type t, and that a has
type t.(0)∗ 6=0.

Example 2 (Labeling). We consider the state of Figure 2(a). In this case, the
relations below form a valid labeling of the memory:

L : 0x20 7→ node.(0) 0x21 7→ node.(1) . . . 0x2c 7→ node.(15)
0x60 7→ node.(0) 0x61 7→ node.(1) . . . 0x6c 7→ node.(15)
0x80 7→ node.(0) 0x81 7→ node.(1) . . . 0x8c 7→ node.(15)

Subtyping relation. In Example 2, the labeling L conveys that the type of address
0x24 is node.(4). But we could also view this offset as the base address of a doubly-
linked list and give it type dll.(0), since node contains a dll at offset 4. However,
the former is more precise: all memory cells that contain a node.(4) contain a
dll.(0), but the converse is not true. This remark motivates the definition of a
physical form of subtyping relation. Intuitively, the above remark should be noted
node.(4) � dll.(0). More generally, t.(n) � u.(m) means that t “contains” a u
somewhere in its structure.

Definition 3 (Subtyping between address types). The relation� ∈ TA×TA
is defined inductively according to the rules below:

t.(k) � t.(k)

t =M(n) 0 ≤ k < sizeν(t)

n.(k) � t.(k)

t.(k) � u.(l) u.(l) � v.(m)

t.(k) � v.(m)

0 ≤ k < sizeν(t1)

(t1 × t2).(k) � t1.(k)

0 ≤ k < sizeν(t2)

(t1 × t2).(sizeν(t1) + k) � t2.(k)

0 ≤ q < s 0 ≤ k < sizeν(t)

t[s].(q · sizeν(t) + k) � t.(k)

Interpretation of types. We now give the meaning of types in terms of an interpre-
tation function that maps each type into a set of values. Unlike classical notions of
types, the interpretation of a physical type depends on the data of a labeling L to
resolve field pointers to other structures and on a valuation ν : V] → V in order to
check that side predicates are satisfied. In the following, we let evalν : pred×V→ B
be the function that maps a predicate to its boolean value for valuation ν (the
definition of evalν is classical thus omitted).

Definition 4 (Interpretation of types). Given labeling L and valuation ν the
interpretation function L · ML,ν : T→ P(N) is defined by:

L wordn ML,ν = Vn L ta∗6=0 ML,ν = {a ∈ A | L(a) � ta}
L t1 × t2 ML,ν = {v1 :: v2 | ∀i, vi ∈ L ti ML,ν} L ta∗ ML,ν = L ta∗6=0 ML,ν ∪ {0}

L {x : t | p(x)} ML,ν = {v ∈ L t ML,ν | evalν(p, v) = true}
L t[s] ML,ν = {v0 :: v1 :: · · · :: vs−1 | v0, . . . , vs−1 ∈ L t ML,ν}

9



As shown below, the interpretation is monotone with respect to subtyping, which is
consistent with Liskov’s substitution principle [23], which means that all properties
of addresses of type τ also hold for addresses of type υ, where υ � τ :

Lemma 1 (Monotonicity). Let t.(n) and u.(m) be two address types such that
t.(n) � u.(m). Then L t.(n)∗6=0 ML,ν ⊆ Lu.(m)∗ 6=0 ML,ν .

Example 3. In Figure 2(a), and using the labeling of Example 2, L node.(4)∗6=0 ML,ν
and L dll.(0)∗6=0 ML,ν both denote the set of addresses {0x24, 0x64, 0x84}.

In the analysis, the notion of subtyping and its properties with respect to inter-
pretation have two applications: first, they allow verifying memory safety and
the preservation of structural invariants by checking subtyping is preserved by
memory updates; second, they also allow to over-approximate aliasing relations as
we demonstrate now.

Definition 5 (Set of addresses covered by a type). Let L ∈ L, ν : V] → V,
and t be a type. Then, the set of addresses covered by type t is:

addrL,ν (t) ::= {a ∈ A | ∃i, 0 ≤ i < sizeν(t) ∧ L(a) � t.(i)}.

Definition 6 (Type containment). Let ν : V] → V be a valuation and t, u ∈ T
be types. We say that “t contains u” if and only if:

∃i ∈ [0, sizeν(t)) , ∀k ∈ [0, sizeν(u)) , t.(i+ k) � u.(k).

Theorem 1 (Physical types and aliasing). Let t, u ∈ T. Then, either t and u
cover disjoint regions, or one contains the other, i.e., if addrL,ν (t) ∩ addrL,ν (u) 6=
∅, then t contains u or u contains t.
Proof. This comes from the fact that � is a tree relation.

This result entails that physical types can be used to compute must-not alias
information. As an example, in Figure 2(a), if we consider types uf and dll, neither
of them contains the other, thus their addresses are disjoint.

States in a typing environment. In the following paragraphs, we define a typed
semantics for Whilemem. This semantics is conservative in the sense that it rejects
some programs and executions that could be defined in the semantics of Section 3.
In this second semantics, states are extended with typing information. Its goal is
to serve as a step towards the verification of preservation of physical types. More
precisely, a state should enclose not only a store and a heap, but also a labeling
and a map from variables to types. Furthermore, such a state is well typed if the
heap is consistent with the labeling and the variable values are consistent with
their types.

Definition 7 (Well-typed state). A state is a 4-tuple (σ, h,L, Γ ), where σ ∈ �,
h ∈ H, L is a labeling, and Γ : X→ T maps variables to types. We write St for the
set of such 4-tuples.

Moreover, state (σ, h,L, Γ ) is well typed if and only if:
1. The labeling is consistent with the heap: for all address a ∈ A, if there exists a

type t such that L(a) = t.(0), then h[a..a+ sizeν(t)] ∈ L t ML,ν ;
2. Variables are well-typed: for all variable x ∈ X, σ(x) ∈ LΓ (x) ML,ν .
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c ∈ Vn
(σ, h,L, Γ ) ` c : wordn

c ∈ A
(σ, h,L, Γ ) ` c : L(c)∗ 6=0 (σ, h,L, Γ ) ` x : Γ (x)

(σ, h,L, Γ ) ` e : t.(i) ∗ 6=0 t.(i) � u.(j)
(σ, h,L, Γ ) ` e : u.(j)∗6=0

(σ, h,L, Γ ) ` e : t.(i) ∗ t.(i) � u.(j)
(σ, h,L, Γ ) ` e : u.(j)∗

(σ, h,L, Γ ) ` e : t.(0) ∗6=0 sizeν(t) = `

(σ, h,L, Γ ) ` ∗`e : t

(σ, h,L, Γ ) ` e1 : wordn s ` e2 : wordn

(σ, h,L, Γ ) ` e1 � e2 : wordn

(σ, h,L, Γ ) ` e1 : t.(o) ∗ 6=0 (σ, h,L, Γ ) ` e2 : wordW EJe2K(σ, h) = v2 0 ≤ o+ v2 < sizeν(t)

(σ, h,L, Γ ) ` e1 + e2 : t.((o+ v2))∗6=0

(σ, h,L, Γ ) ` e : t evalν(p, EJeK(σ, h)) holds

(σ, h,L, Γ ) ` e : {x : t | p(x)}
(σ, h,L, Γ ) ` e : t.(0) ∗ EJeK(σ, h) 6= 0

(σ, h,L, Γ ) ` e : t.(0)∗ 6=0

Fig. 6. Typing rules for Whilemem expressions.

Typed semantics of expressions. Typing of expressions aims at proving that the
evaluation of an expression will either return a value consistent with the type or a
runtime error. Unlike classical type systems, we do not use physical types to prevent
runtime errors directly; instead, we let the analysis discharge the verification of
memory safety as a second step, after types have been computed. Given a store
σ, a heap h, a labeling L, a typing of variables Γ , an expression e, and a type t,
we write (σ, h,L, Γ ) ` e : t when expression e can be given type t in the typing
state (σ, h,L, Γ ). The typing of expressions are given in Figure 6. Intuitively, the
type of addresses (resp., variables) is resolved by L (resp., Γ ). Rules for base values
and binary operators are classical. Memory reads and pointer arithmetics are
typed using corresponding offset calculation over physical types. Subtyping allows
replacing a type to a container type at pointer dereference points. Finally, types of
expressions can be refined by the values these expressions evaluate to. This typing
is sound in the following sense:

Theorem 2 (Soundness of typing of expressions). Let an expression e, a
valuation ν ∈ V] → V, a typing state (σ, h,L, Γ ) and a type t ∈ T. Then, if
(σ, h,L, Γ ) is well typed under ν, if (σ, h,L, Γ ) ` e : t, and if EJeK(σ, h) = v, then
either v = Ω or v ∈ L t ML,ν .

Note that an expression may be given several types in a same state due not only to
subtyping but also to pointer arithmetics. For instance, if 8 has type t.(0)∗, and 16
has type u.(0)∗, then 8 + 16 is at the same time of type t.(16)∗ and u.(8)∗.

Typed semantics of statements. The typed semantics of instructions is defined
by a relation→t ∈ (stmt × St)× (stmt × St). It is mostly similar to the untyped
semantics, but rules involving memory writes differ. Figure 7 displays the rules
regarding memory writes. The rule for assignment not only updates the store but
also the typing environment Γ . We note that this semantics is non-deterministic
since the type of an expression is not unique in general. This semantics enjoys the
type preservation property:

Theorem 3 (Preservation of typing of states). Let a valuation ν : V] → V,
and a typing state (σ0, h0,L0, Γ0), well typed under ν, such that (σ0, h0,L0, Γ0)→t

(σ1, h1,L1, Γ1). Then, (σ1, h1,L1, Γ1) is well typed under ν.
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(σ, h,L, Γ ) ` e : t EJeK(σ, h) = v(
x := e, (σ, h,L, Γ )

)
→t

(
skip, (σ[x← v], h,L, Γ [x← t])

)
(σ, h,L, Γ ) ` e1 : t.(0)∗ 6=0

(σ, h,L, Γ ) ` e2 : t sizeν(t) = ` EJe1K(σ, h) = (W, a) EJe2K(σ, h) = (`, v)(
∗` e1 := e2, (σ, h,L, Γ )

)
→t

(
skip, (σ, h[a..a+ `← v],L, Γ )

)
Fig. 7. Selected transition rules for programs.

Therefore, as we consider executions starting in a well-typed state only, Theorem 3
entails that well-typedness is an invariant. This semantics is not computable in
general.

Last, we note that the typed semantics is more restrictive than the untyped
one:

Theorem 4 (Semantic comparison). If the typing states (σ0, h0,L0, Γ0) and
(σ1, h1,L1, Γ1) are such that (p0, (σ0, h0,L0, Γ0)) →t (p1, (σ1, h1,L1, Γ1)), then
(p0, (σ0, h0))→ (p1, (σ1, h1)).

Intuitively, the typed semantics is more restrictive than the untyped semantics in
two ways: first, it considers only well-typed initial states only; second, it considers
ill-typed memory writes as blocking, even though such a write may be part of a
program fragment that overall preserves invariants. Finally, note that malloc calls
cannot be readily incorporated in the typed semantics; this is solved in Section 7.

5 Type-based shape domain

We now set up the type-based shape abstract domain which serves as a basis for our
analysis by defining its abstract elements and concretization function. This abstract
domain combines type information with numerical constraints. Types constrain
the regions pointed to by variables and may contain symbolic variables denoting
numerical values. To cope with numerical constraints, our abstract domain is
parameterized by a numerical domain such as that of intervals [9] or any other
abstract domain. Thus, we assume such an abstract domain D]num is fixed, together
with a concretization function γN : D]num → (V] → V).

Abstract types. First, an abstract type defines a set of types where all symbolic
variables are mapped into a numerical value. Due to the dependency on the
association of symbolic variables to numerical values, its concretization returns
pairs including a valuation ν : V] → V. It boils down to either a physical type or
either of the ⊥,> constant elements.

Definition 8 (Abstract types). The set of abstract types T] is defined by the
grammar below together with its concretization γT : T] → P(T× (V] → V)):
T] 3 t] ::= ⊥

| t.(α)∗
| t.(α)∗6=0

| >

γT : ⊥ 7−→ ∅
> 7−→ T× (V] → V)
t.(α)∗ 7−→ {(t.(ν(α))∗, ν) | 0 ≤ ν(α) < sizeν(t)}
t.(α)∗6=0 7−→ {(t.(ν(α))∗6=0, ν) | 0 < ν(α) < sizeν(t)}
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Example 4 (Array type). As an example, the abstract type and numerical con-
straints below abstract the information that one would attach to a pointer to some
array of 10 integers:

– abstract type int[10].(α) states that we are looking at an address somewhere
into such an array;

– numerical constraints α ∈ [0, 39] ∧ ∃k ∈ N, α = 4k (expressible in a reduced
product of intervals and congruences) refines the above abstract type by filtering
out misaligned pointers.

Note that an address into an array of statically unknown length would write down
int[α′].(α), with matching numerical constraints.

Type-based shape abstraction. At this point, we can formalize the type based shape
domain as follows, by letting each variable be abstracted by an abstract type. In
order to also express constraints over the contents of variables, this abstraction
also needs to attach to each variable a symbolic variable denoting its value.

Definition 9 (Type-based shape domain). We let the type-based shape
domain H] denote the set of pairs (σ], Γ ]) pairs called abstract stores, where:

– σ] : X→ V] is a mapping from variables to symbolic variables,
– and Γ ] ∈ X→ T] is a mapping from variables to abstract types.

Moreover, the concretization for H] is the function γH : H] → P(St × (V] → V))
defined by:

γH
(
Γ ]

)
=

{(
(σ, h,L, Γ ), ν

) ∣∣ (σ, h,L, Γ ) is well typed under ν
and ∀x ∈ X,

(
Γ (x), ν

)
∈ γT (Γ ](x))

and ∀x ∈ X, σ(x) = ν(σ](x))
}

Definition 9 does not provide representable abstract states quite yet. Indeed, we still
need to reason over the possible numerical values denoted by symbolic variables.
The numerical abstract domain allows completing this last step.

Definition 10 (Combined shape abstraction). The combined shape-numeric
abstract domain S] and its concretization γS : S] → P(St × (V] → V)) are defined
as follows:

S] ::= H] × D]num γS(h], ν]) = {(s, ν) ∈ γH(h]) | ν ∈ γN (ν])}

Figure 2(c) provides an example of an abstract state in this combined abstraction.

6 Static analysis

Our static analysis is a standard, forward, abstract interpretation-based static
analysis [9]. We focus on important operations,like verifying that stores preserve
type invariants, or the lattice operations. Both of these operations rely on a procedure
called abstract type checking.
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Structure of the interpreter. The analysis of Whilemem expressions and statements
is respectively performed by the two functions EJ·K] : expr×S] → (V]×T])×D]num
and J·K] : stmt × S] → S]. The evaluation of expressions manipulates abstract

values V]t
def
= V] × T], which are the counterpart of concrete values in the concrete

semantics. An abstract value αt] is just a pair (α, t]) ∈ V]t with a symbolic variable
α and an abstract type t] respectively describing all the possible values and some
possible types for an expression. The evaluation of symbolic variables is standard
[5] (each node in the expression tree creates a fresh symbolic variable and updates
the numerical domain accordingly), and the computation of abstract types follows
closely the concrete typing rules given in Figure 6.

Abstract type checking. Abstract type checking verifies that, given the numerical
constraints of ν], casting an abstract value αt] into type u] is safe (this is written
as α : t]

ν]

 u]). In most type checks (that we call upcasts), this is done by checking
that t] �]

ν] u
], where �] is an ordering between abstract types which derives from

the subtyping relation (�) between concrete address types:

Theorem 5 (Soundness of abstract subtyping). Let ν] ∈ D]num, t], u] ∈ T],
t.(i) and u.(j) ∈ TA. If t] �]

ν] u
], then

∀ν ∈ γN (ν]), (t.(i), ν)∗ ∈ γT (t]) ∧ (u.(j), ν)∗ ∈ γT (u]) =⇒ t.(i) � u.(j).

Example 5. (Upcasting after pointer arithmetics) Following Definition 3,

int[10].(α)∗ �]
v]

int.(0)∗ holds when both numerical constraints α ∈ [0, 39] ∧
∃k ∈ N, α = 4k hold. Thus the abstract type given in Example 4 can be safely
casted into an int∗. Note that querying the numerical abstract domain is necessary
to check the safety of this cast.

Some other type checks, like verifying that it is safe to transform a t∗ pointer
to a t∗6=0 pointer, or checking that the predicate of a refinement type holds, are
downcast operations: to verify the safety of the cast, we examine not only the types,
but also the numerical properties of the value being type checked:

Example 6. (Downcasting to a ∗ 6=0 pointer) In Figure 1, the merge function gives
&x->dll, whose type is node.(α)∗ with α = 4, as an argument to dll union,
which eventually gets written into y->prev, a memory location that may contain
values in the abstract type dll.(β)∗6=0 with β = 0 : this requires to perform a
type check. Casting to dll.(β)∗ can be done using the abstract subtyping relation

node.(α)∗ �]
ν] dll.(β)∗, but to cast to dll.(β)∗ 6=0, we must additionally check

that the value x->dll (i.e. &x + offset 4) cannot be 0; this makes use of the fact
that pointer arithmetics inside a valid object cannot wrap around.

The soundness of the abstract type checking operation and its proof are estab-
lished using the interpretation of the types:

Theorem 6 (Soundness of abstract type checking). Let (h], ν]) ∈ S]. Let

α ∈ V] be a symbolic variable and t], u] be two abstract types. If α : t]
ν]

 u] then

∀((σ, h,L, Γ ), ν) ∈ γS(h], ν]), ν(α) ∈ L t] ML,ν =⇒ ν(α) ∈ Lu] ML,ν .
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Interpretation of base statements. As shown in Example 6, the analysis must ensure
that all memory updates preserve the typing of states (Theorem 3), and abstract
type checking is a central operation for doing this. The interpretation of memory
updates is done as follows:

J∗`e1 := e2K
]
(h], ν])

def
= (h], ν]2) if α : t]

ν]
2 u] where u] is a non-null pointer type

and (α, t], ν]1) = EJe1K](h], ν]) and (β,w], ν]2) = EJe2K](h], ν]1)
and w] is the type of the values pointed by (α, u])

J∗`e1 := e2K
]
(h], ν])

def
= > otherwise

Note that memory updates do not modify the representation of the abstract heap,
and is thus a fast operation. The evaluation of assignments is also fast, since it only
needs to evaluate an expression and to record the abstract value in the abstract
store:

Jx := eK]((σ], Γ ]), ν]) def
= (σ][x← α], Γ ][x← t]], ν]1)

where (α, t], ν]1) = EJeK]((σ], Γ ]), ν])

Lattice operations. The analysis of condition and loop commands is based on
approximations for concrete unions and on conservative inclusion checks vΦ,S]

to test whether a post-fixpoint is reached [9]. The latter relies on abstract type
checking. This operation consists in type-checking every Whilemem variable, in
addition to verifying the inclusion of the numerical constraints:

((σ]1, Γ
]
1), ν]1) vΦ,S] ((σ]2, Γ

]
2), ν]2)

def
=

ν]1 vΦ,D]
num

ν]2 and ∀x ∈ X : (σ]1(x) : Γ ]1(x)
ν]
1 Γ ]2(x))

where Φ : V] → V] is a renaming function that handles the fact that each abstract state
refers to different variables [5]) (here it can be defined as ∀x ∈ X : Φ(σ]1(x)) = σ]2(x)).

Theorem 7 (Soundness of inclusion). Let s]1, s
]
2 ∈ S]. Then:

s]1 vΦ,S] s]2 =⇒ ∀(s, ν) ∈ γS(s]1), (s, ν ◦ Φ) ∈ γS(s]2)

The join operation can be deduced from the definition of vΦ,S] . These lattice
operations are necessary to define the interpretation of while and if statements
(which is standard). The interpretation of other statements is also standard.

Theorem 8 (Soundness of the abstract semantics). Let s] ∈ S] be an ab-

stract state and c ∈ stmt be a statement. Then, γS(JcK](s])) ⊇ JcK(γS(s])).

7 Retained and staged points-to predicates

The type-based shape abstraction suffers from two important limitations. First, the
heap is represented only in a summarized form by the type constraints, and there
is no way to retain additional information about the contents of the heap. Second,
all stores to memory must preserve the type invariants—situations where the type
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P]
def
= V]t ⇀ N× V]t U]

def
= S] × P] × P]

γP : P] → P
(

H× (V] → V)
)

γP (p]) = {(h, ν) |∀(αt, βt) ∈ V]t, ∀` ∈ N : p](αt) = (`, βt) =⇒ h[ν(α)..ν(α) + `] = ν(β)}

γU : U] → P
(

S× (V] → V)
)

γU (s], r], p]) = {
(
(σ, h′ . h), ν

)
| ∃Γ,L, h, h′ :

(
(σ, Γ, h,L), ν

)
∈ γS(s]) and

(h, ν) ∈ γP (r]) and

(h′, ν) ∈ γP (p]) }

where h′ . h : dom(h′) ∪ dom(h)→ V is defined as (h′ . h)(a)
def
= h′(a) if a ∈ dom(h′)

(h′ . h)(a)
def
= h(a) otherwise

Fig. 8. Extending the base domain (s]) with retained (r]) and staged (p]) points-to predicates

invariants are temporarily violated are not handled. This happens when data is
allocated but not yet initialized (as in function make in Figure 1), when updating a
value with an invariant that spans multiple words, and in other situations.

We solve both problems by tracking some points-to predicates and attaching
specific properties to them. The meaning of a points-to predicate αt] 7→` βu] is,
that for all possible valuations ν, the value (of size `) stored in the heap at address
ν(α) is ν(β) and that α satisfies the abstract type t] and β the abstract type u].
Points-to predicates are represented using a simple map p mapping a symbolic
variable to another variable and size, and is concretized by considering all the
possible values for each symbolic variable. In the following, we define and track the
so-called retained and staged points-to predicates. Their combination is formally
defined in Figure 8 (where each points-to predicate αt] 7→` βu] is represented by
bindings αt] 7→ (`, βu]) of a function p] ∈ P]).

Retained points-to predicates. The type-based shape domain remembers flow-
sensitive information only about the store, as the heap is represented only using
the type invariants. We use retained points-to predicates αt] 7→` βu] to store
flow-sensitive information about the heap: they provide symbolic variables, like
β, to represent values stored in the heap, so that they can be attached numerical
and type information. In practice, retained points-to predicates achieve an effect
comparable to materialization in shape analyses4. The concretization of these
predicates is done by standard intersection.

Example 7 (Retained points-to predicate). Consider the abstract state (Figure 3)
at line 19 of Figure 1. The binding from (β, uf.(0)∗) to (δ, uf.(0)∗) (represented
by an arrow) has been added by the read parent->parent at line 17. Having a

4 A difference is that retained point-to predicate only retains information about a given
cell, instead of modifying the heap summary to be precise on this cell.
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variable δ materialized to represent the contents of β allows inferring δ 6= 0 from
the test parent->parent != 0.

Staged points-to predicates. A staged points-to predicate α 7→` β represents a store
operation performed by the program, but that is not yet propagated to the main
domain S]. The idea is that if that if an invariant is temporarily violated, subsequent
stores may restore it; by grouping and delaying the stores to the type-based abstract
domain S], we prevent S] from needing to take ill-typed states into account. In
the concretization, the heap represented by the staged points-to predicates take
precedence (operator .) over the heap represented by the type-based domain. Note
this concretization allows describing states that are not well-typed, hence the
codomain of γU is P

(
S× (V] → V)

)
instead of P

(
St × (V] → V)

)
.

Example 8 (Staged points-to predicate). The contents of the memory allocated
at line at line 40 of Figure 1 are unconstrained, and may not correspond to the
type node* of the address returned by malloc: the reachable states at this line
include ill-typed states that are not representable by S]. This is fixed by introducing
staged points-to predicates from the address returned by malloc, which allows
the abstract value of the typed domain to represent only well-typed states, but
still take into account the call to malloc. These staged points-to predicates are
modified by the subsequent statements, and from line 44, the staged points-to
predicates can be dropped by performing the corresponding stores to the memory,
because the reachable states are now well-typed.

Static analysis operations. The addition of points-to predicates only changes the
behaviour of memory operations (load,store, and malloc). The definition of these
operations rely on determination of must and may-alias information between pairs
(αt, βu) of abstract values. This is done using both the types (Theorem 1) and
numerical information about addresses (e.g. addresses of an array at two indices i
and j with i < j will not alias), but this can be enhanced with information coming
from other domains (like allocation sites [1]).

A malloct of type t is interpreted simply by adding a staged points-to predicate
αt∗ 7→` βt where both α and β are fresh symbolic variables.

Loading a value of size ` at address αt returns the value βu if a points-to
predicate εv 7→` βu exists in the domain and we can prove α = ε. Otherwise
we performs a “weak read” by evaluating the load on the type-based domain,
and joining the result with the values of all the staged points-to predicates whose
addresses may alias with αt. Finally, if βu is the result of this operation, the analysis
adds a new retained points-to predicate αt 7→` βu.

Storing a value δu of size ` at address αt first needs to remove all points-to
predicates that may alias withαt. Retained points-to predicates are simply dropped,
but staged points-to predicate must be propagated by performing the corresponding
stores to the type-based shape domain. Then, a new staged points-to predicate
αt 7→` δu is added.

Example 9. Consider again the abstract state (Figure 3) at line 19 of Figure 1. The
statement x->parent = parent->parent first reads parent->parent from mem-
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ory, and retrieves δ, from the points-to predicate β 7→ δ. The store to x->parent

(corresponding to address α) first needs to drop points-to predicates that may alias
with α; on this abstract state, only β 7→ δ is concerned. Finally, a new points-to
predicate α 7→ δ is added. Note that α 6= β is an invariant of the program; if the
type based shape domain were complemented with a more precise abstraction,
then the points-to predicate β 7→ δ would not need to be dropped.

8 Experimental evaluation

Research questions. The goal of our experimental evaluation is to evaluate the
performance and precision of our analysis, the effort required for its parametrization,
its ability to handle low-level (binary and system) code and complex sharing
patterns.

Methodology. We have implemented two analyses (available at https://zenodo.

org/record/5512941) using the Codex library for abstract interpretation: one for C
code using the Frama-C platform (Frama-C/Codex); one for binary code using the
Binsec platform (Binsec/Codex). All analyses have been conducted on a standard
laptop (Intel Xeon E3-1505M 3Ghz, 32GB RAM). We took the mean values between 10
runs, and report the mean (all standard deviations were below 4%).

We ran our analysis on all the C benchmarks from two shape analysis publications;
moreover we analyze their compiled version using gcc 10.3.0 with different levels of
optimizations. These benchmarks are challenging: the graph-* benchmarks from Li et
al. [22] were used to verify unstructured sharing patterns; to complete this evaluation
we extend this with our running example. The other benchmarks from Li et al. [21] were
used to demonstrate scalability issues faced by shape analyzers. Both benchmarks were
created to demonstrate shape analysis, which is a more precise abstraction than the one
we propose. Thus, they are suitable to evaluate performance, ability to handle complex
sharing patterns, and precision.

This evaluation completes that in Nicole et al. [29], where we ran our analyzer on the
kernel executable of an industrial embedded kernel (Asterios, developed by Krono-safe)
to verify security properties (including full memory safety), with only 58 lines of manual
annotations, which demonstrated the ability to handle low-level code, precision, performance
and low amount of parametrization on a larger use case.

Results Table 1 provides the results of the evaluation. The benchmarks are grouped by
the data structure they operate on; we report the number of lines describing physical
types (generated from existing types information, or manually edited) shared by a group.
The annotations mostly consist in constraining some pointers types to be non-null. The
pre column describes necessary pre-conditions of the verified function (e.g. that a pointer
argument must not be null). The LOC column is the number of lines of code of each
function, excluding comments, blank lines and subroutines. The ratio of lines of manual
annotations per line of code for a group, goes from 0% to 7.8%, with a mean of 3.2% and
median of 2.7%.

The next columns in the table provide the Time taken by the full analysis (in s), the
number of alarms of the full analysis (7→ column) and the analysis without the retained
and staged points-to predicates (67→ column), for the C version of the code and the various
binaries produced by GCC. For brevity we have omitted the time taken by the 67→ analysis
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Benchmark
Annotations

LOC
C O0 O1 O2 O3

gen/ed/pre Time / 7→ / 67→ Time/ 7→/ 67→ Time/ 7→/ 67→ Time/ 7→/ 67→ Time/ 7→/ 67→
sll-delmin

11 0
1 25 0.27 0 0 0.13 0 0 0.15 0 0 0.15 0 0 0.13 0 0

sll-delminmax 1 49 0.30 0 0 0.19 0 0 0.17 0 0 0.17 0 0 0.16 0 0

psll-bsort
10 0

0 25 0.30 0 22 0.41 0 3 0.25 0 3 0.26 0 3 0.29 0 3
psll-reverse 0 11 0.28 0 2 0.10 0 1 0.13 0 1 0.10 0 1 0.10 0 1
psll-isort 0 20 0.29 0 2 0.34 0 1 0.34 0 1 0.32 0 1 0.33 0 1

bstree-find 12 0 1 26 0.27 0 0 0.14 0 0 0.13 0 0 0.15 0 0 0.16 0 0

gdll-findmin

25 5

1 49 0.50 0 0 0.41 0 0 0.39 0 0 0.41 0 0 0.42 0 0
gdll-findmax 1 58 0.55 0 0 0.33 0 0 0.22 0 0 0.21 0 0 0.20 0 0
gdll-find 1 78 0.56 0 0 0.15 0 0 0.15 0 0 0.14 0 0 0.14 0 0
gdll-index 1 55 0.53 0 0 0.32 0 0 0.33 0 0 0.30 0 0 0.29 0 0
gdll-delete 1 107 0.57 0 2 0.16 0 0 0.14 0 0 0.13 0 0 0.13 0 0

javl-find

45 12

2 25 0.35 0 0 0.23 0 0 0.28 0 0 0.18 0 0 0.19 0 0
javl-free 1 27 0.35 0 4 0.11 0 3 0.12 0 0 0.10 0 0 0.11 0 0
javl-insert 2 95 0.53 6 56 0.52 12 20 0.39 30 34 0.43 29 34 0.43 29 34
javl-insert-32× 2 95 16.68 192 1792 28.28 14 20 33.14 34 34 32.00 32 34 40.01 32 34

gbstree-find
23 5

1 53 0.58 0 0 0.38 0 0 0.40 0 0 0.56 0 0 0.59 0 0
gbstree-delete 1 165 0.81 0 0 0.90 0 0 0.72 0 0 0.67 0 0 0.66 0 0
gbstree-insert 1 133 0.55 0 7 0.26 0 0 0.21 0 0 0.23 0 0 0.24 0 0

brbtree-find
24 3

2 29 0.32 0 0 0.17 0 0 0.19 0 0 0.23 0 0 0.23 0 0
brbtree-delete 2 329 0.79 103 127 1.15 44 73 1.23 46 53 0.85 58 63 0.84 58 63
brbtree-insert 2 177 0.61 24 47 0.90 11 23 0.47 16 17 1.22 21 17 0.97 21 17

bsplay-find
22 1

1 81 0.53 0 18 0.25 0 7 0.23 0 7 0.23 0 7 0.23 0 7
bsplay-delete 1 95 0.72 0 38 0.45 0 11 0.44 0 10 0.44 0 10 0.44 0 10
bsplay-insert 1 101 0.57 0 18 0.25 0 7 0.25 0 7 0.25 0 7 0.25 0 7

graph-nodelisttrav

23 0

1 12 0.20 0 0 0.10 0 0 0.10 0 0 0.10 0 0 0.11 0 0
graph-path 1 19 0.21 0 14 0.15 0 5 0.16 0 0 0.14 0 0 0.16 0 0
graph-pathrand 1 25 0.22 0 10 0.13 0 0 0.21 0 0 0.12 0 0 0.11 0 0
graph-edgeadd 1 15 0.27 0 2 0.12 0 1 0.11 0 1 0.10 0 1 0.10 0 1
graph-nodeadd 1 15 0.26 0 2 0.10 0 1 0.08 0 1 0.09 0 1 0.10 0 1
graph-edgedelete 1 11 0.20 0 2 0.10 0 1 0.10 0 0 0.10 0 0 0.11 0 0
graph-edgeiter 1 22 0.23 0 0 0.13 0 0 0.11 0 0 0.12 0 0 0.12 0 0

uf-find
33 3

1 11 0.31 0 24 0.07 0 6 0.09 0 0 0.08 0 0 0.07 0 0
uf-merge 1 17 0.34 0 50 0.13 0 7 0.18 0 0 0.18 0 0 0.15 0 0
uf-make 0 9 0.31 0 4 0.05 0 3 0.06 0 3 0.07 0 3 0.06 0 3

Total verified 30 13 30 16 30 21 30 21 30 21

Table 1. Results of the evaluation

in the benchmarks; on average this analysis takes 1.5% less time for the C, and 20% less
for binary code (maximum: 45%). The number of alarms is counted differently in C (one
possible alarm each time the analyzer evaluates a statement) and in binary (where alarms
are uniquified per instruction), but in both 0 alarms means that the analyzer verified
type-safety. We observe that the full analyzer succeeds in verifying 30 benchmarks (out
of 34), both in C and binary code. Removing the points-to predicates makes the analysis
significantly less precise, as only 13 benchmarks are verified in C, and between 16 (for
-O0) and 21 (for -O1,-O2,-O3) in binary code.

Discussion and conclusions Our combination of domains is effective at verifying type
safety (which entails spatial memory safety) on C and binary code, even for benchmarks
that have complex sharing patterns, with a low amount of annotations. The analysis
performs evenly well on all benchmarks, and scales well on javl− insert−32×, which
is challenging even for shape analysis with disjunctive clumping [21]. We interpret the
fact that binary analysis is faster than the C analysis by implementation issues in the C
analyzer.

The points-to predicates are very important for precision, as otherwise the number of
false alarms raises significantly. The analysis succeeds equally on binary programs and on
C programs, despite the complex code patterns that the C compiler may produce. Note
that without points-to predicates, more binary codes are verified than in C: indeed in
some cases the compiler performs a register promotion of a heap value, which removes
the need for a points-to predicate.
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9 Related works and conclusion

Memory analyses based on type inference. Several analyses that partially verify spatial
memory safety using static type inference have been proposed. As unification-based type
inference is less expressive than abstract interpretation, it is insufficiently precise to verify
spatial memory safety, which is generally addressed by also using dynamic verification
(e.g. Cyclone [16], CCured [28], CheckedC [14]). Still, the structural subtyping notion that
we use is similar to the physical subtyping by Chandra and Reps [4], even if the physical
type safety property that they verify does not include spatial memory safety (e.g. it does
not check pointer arithmetics or null pointer dereferences). Liquid types [32] provide
refinement types similar to ours, that are type checked by enhancing type inference with
abstract interpretation and SMT solving. They discuss several limitations that our work
solves: lack of structural subtyping (that we solve using our ordering on concrete and
abstract types), and conservative decisions of when to fold and unfold variables (that
we solve by using abstract interpretation instead of type inference [8], which allows our
focusing decisions to be based on the current results of the analysis).

Other type-based memory analyses. Type-based alias analyses [12] propose a system to
determine aliasing based on subtyping relations, which is present in our work (Theorem 1).
These analyses assume that type safety is verified by other means (e.g. type checking),
while our abstract interpretation also verifies type safety, on unsafe languages like C and
binary code. Data structure analysis [19] produces a flow-insensitive description of data
structure layout similar to our description of types (excluding numerical predicates),
which could be used to split our types into distinct subtypes, making our analysis more
precise. The structural analysis by Marron et al. [26] is also an intermediate between
pointer and shape analyses, which is more precise than our type-based shape domain as
it builds a flow-sensitive abstract heap information (the storage shape graph), while our
description of types is flow-invariant. But their analysis proceeds on a type-safe language
with no type cast, pointer arithmetic, interior pointers, or uninitialized data. Contrary to
their results, our experience indicates that strong updates are important to verify the
preservation of structural invariants, which we believe comes from the lower-level nature
of our source languages. In a previous work [29] we used our type-based domain to verify
security properties of an industrial embedded kernel; this work formally presents the
analysis, extended with retained and staged points-to predicates and support for dynamic
memory allocation.

Shape analyses. Many challenges arise in programs manipulating memory. These have
been individually adressed by existing work on shape analyses, for instance to limit
disjunctions [25,21], to adapt to custom data structures [34,7], to interpret low-level
memory operations [18,20,13], to allow composite data structures [2,37], interaction with
arrays [24], data structure invariants [7], or unstructured sharing [22]. Our type-based
analysis is less precise than a full shape analysis, as e.g. it cannot verify temporal memory
safety (i.e. use-after-free errors), but it simultaneously handles all the above aspects in a
simpler analysis, which is sufficiently precise to verify preservation of structural invariants
and spatial memory safety.
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A Concrete semantics

The semantics of Whilemem expressions is given as an operator EJeK : S → V ] {Ω} in
Figure 9 (Ω denotes a run-time error). The operational semantics of Whilemem programs
→ ∈ (stmt × S)× (stmt × S) is given in Figure 10, and the typed operational semantics
→t ∈ (stmt × St)× (stmt × St) is given in Figure 11.

EJcKs = c

EJxK(σ, h) = σ(x)

EJ ∗` eK(σ, h) =

{
h[a..a+ `] if a = EJeK(σ, h) and [a, a+ `) ⊆ dom(h)

Ω otherwise

EJe1/e2Ks =


(`, v1/v2) if EJe1Ks = (`, v1) and EJe2Ks = (`, v2)

with v2 6= 0

Ω otherwise

EJe1 � e2Ks =

{
(`, v1 � v2) if EJe1Ks = (`, v1) and EJe2Ks = (`, v2)

Ω otherwise

Fig. 9. Semantics of Whilemem expressions.

The (typed) collecting semantics is defined from→t as follows:

Definition 11. Given a Whilemem program p, its collecting semantics JpK is the function
of P (S)→ P (S) defined as follows: for every set of states S, the semantics JpKS is the
set of states s′ ∈ St such that:

∃s ∈ S,∃(p1, s1), . . . , (pn, sn) ∈ stmt × St :

(p, s)→ (p1, s1)→t · · · →t (pn, sn)→t (skip, s′)
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(skip;S, s)→ (S, s)

(S1, s)→ (S′
1, s)

(S1;S2, s)→ (S′
1;S2, s)

EJeK(σ, h) = v 6= Ω(
x := e, (σ, h)

)
→
(
skip, (σ[x← v], h)

)
EJe1K(σ, h) = (W, a) EJe2K(σ, h) = (`′, v) ` = `′

(∗`e1 := e2, s)→
(
skip, (σ, h[a..a+ `← v])

)
EJeK(σ, h) = (W, `) [a, a+ `[ ∩ dom(h) = ∅ ` > 0 v ∈ V`(
x := malloct(e), (σ, h)

)
→
(
skip, (σ[x← a], h[a..a+ `← v])

)
EJeK(σ, h) = (W, `) ∀a ∈ A, [a, a+ `[ ∩ dom(h) 6= ∅(
x := malloct(e), (σ, h)

)
→
(
skip, (σ[x← (W, 0)], h)

)
(while e do S done, s)→ (if e then S; while e do S done else skip end, s)

EJeKs = 0

(if e then S1 else S2 end, s)→ (S2, s)

EJeKs /∈ {0, Ω}
(if e then S1 else S2 end, s)→ (S1, s)

Fig. 10. Small-step operational semantics of Whilemem statements.

(skip;S, s)→ (S, s)

(S1, s)→ (S′
1, s)

(S1;S2, s)→ (S′
1;S2, s)

(σ, h,L, Γ ) ` e : t EJeK(σ, h) = v(
x := e, (σ, h,L, Γ )

)
→t

(
skip, (σ[x← v], h,L, Γ [x← t])

)
(σ, h,L, Γ ) ` e1 : t.(0)∗ 6=0

(σ, h,L, Γ ) ` e2 : t sizeν(t) = ` EJe1K(σ, h) = (W, a) EJe2K(σ, h) = (`, v)(
∗` e1 := e2, (σ, h,L, Γ )

)
→t

(
skip, σ, h[a..a+ `← v],L, Γ )

)
(while e do S done, s)→ (if e then S; while e do S done else skip end, s)

EJeKs = 0

(if e then S1 else S2 end, s)→ (S2, s)

EJeKs /∈ {0, Ω}
(if e then S1 else S2 end, s)→ (S1, s)

Fig. 11. Typed operational semantics of Whilemem statements (memory allocation
excepted).
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B Complete definition of abstract operators

The abstract semantics of Whilemem in the abstract domain S] is given in Figure 12. For
the evaluation of conditions, it uses an operator assume(c, ν]) that must be defined on
the numeric domain D]num for all conditions c on the symbolic variables.

In addition, it uses the join operator tS] that can be deduced from the abstract
inclusion vΦ,S] . The widening operator OS] is the same as the join, except that it uses
the widening of the numeric domain, rather than its join.

Finally, limF denotes a post-fixpoint of the monotonous operator F , computed by a
standard increasing sequence using the inclusion check vΦ,S] .

CJ·K] : expr × S] → S]

CJeK]((σ], Γ ]), ν]) = ((σ], Γ ]), assume(α 6= 0, ν]1))

where (α, t], ν]1) = EJeK]((σ], Γ ]), ν])

J·K] : stmt × S] → S]

JskipK]((σ], Γ ]), ν]) = ((σ], Γ ]), ν])

JS1;S2K]((σ], Γ ]), ν]) =
(
JS2K] ◦ JS1K]

)
((σ], Γ ]), ν])

Jx := eK]((σ], Γ ]), ν]) = (σ][x← α], Γ ][x← t]], ν]1)

where (α, t], ν]1) = EJeK]((σ], Γ ]), ν])

J∗`e1 := e2K](h], ν]) = (h], ν]2) if α : t]
ν
]
2 u]

where u] is a non-null pointer type

and (α, t], ν]1) = EJe1K]((σ, Γ ]), ν])

and (β,w], ν]2) = EJe2K]((σ], Γ ]), ν]1)

and w] is the type of the values pointed by (α, u])

J∗`e1 := e2K](h], ν]) = > otherwise

Jif e then S1 else S2 endK](h], ν]) = JS1K]
(
CJeK](h], ν])

)
tS] JS2K]

(
CJ¬eK](h], ν])

)
Jwhile e do S doneK](h], ν]) = CJ¬eK](limF )

where F (X)
def
= XOS]((h], ν]) tS] JSK]

(
CJeK]X)

)
Fig. 12. Abstract semantics of Whilemem statements.
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