
Préparée à l’École normale supérieure

Soutenue par

Olivier NICOLE
Le 19 avril 2022

Ecole doctorale n° 386

Sciences Mathématiques
de Paris centre

Spécialité

Informatique

Vérification automatisée de code système à l'aide
d'abstractions mémoire basées sur le typage

Automated Verification of Systems Code using Type-Based
Memory Abstractions

Composition du jury :

Jean-Christophe FILLIÂTRE

Directeur de recherche, CNRS Président

Alan SCHMITT

Directeur de recherche, Inria Rapporteur

Mihaela SIGHIREANU

Pr. des universités, ENS Paris-Saclay Rapportrice

Timothy BOURKE

Chargé de recherche, Inria Examinateur

Julia LAWALL

Directrice de recherche, Inria Examinatrice

Matthieu LEMERRE

Ingénieur-chercheur, CEA List Co-directeur

Xavier RIVAL

Directeur de recherche, ENS Directeur de thèse

ii

Abstract iii

Automated Verification of Systems Code using Type-Based Memory Abstractions

Abstract

As software is an essential component of many embedded systems or online information systems, its malfunction
can cause harm or security vulnerabilities. New bugs and vulnerabilities keep being discovered in existing software;
many of those bugs and vulnerabilities are caused by violations of memory safety. In particular, low-level code,
written in languages that offer few safety guarantees, is the most prone to this kind of bug. However, writing
low-level code is sometimes necessary for performance or direct access to hardware features. Formal methods can
be used to verify the safety of low-level programs, but automated analysis techniques to verify memory-related
properties, such as shape analyses, still require important human effort, preventing wide adoption.
In this thesis, we propose a practical automated analysis based on types that express structural invariants on mem-
ory down to the byte level. This analysis, which we formalize in the framework of abstract interpretation, offers
a trade-off between precise, flow-sensitive shape analyses and scalable, flow-insensitive pointer analyses. It can
be applied to low-level code with only a small amount of manual annotations. We show how the type-based ab-
straction can be complemented with retained and staged points-to predicates to handle precisely common low-level
code patterns, such as data structure initialization. We demonstrate the effectiveness and practicality of the analy-
sis by verifying the preservation of structural invariants (implying spatial memory safety) on C and machine code
programs, showing that it can be helpful in eliminating an entire class of security vulnerabilities.
We then apply our analysis to executables of embedded kernels and show that our type-based invariants allow to
verify absence of runtime errors and absence of privilege escalation. To do this, we introduce the concept of implicit
properties, i.e. properties which can be defined without reference to a specific program, and therefore lend them-
selves well to automated verification; and we prove that absence of privilege escalation is an implicit property.
Parameterized verification, i.e. verification of the kernel independently from applicative code and data, poses many
challenges, such as the need to summarize memory, or the dependence on a complex precondition on the initial
state. We propose a methodology to solve them using our analysis technique. We apply this methodology to verify
absence of runtime errors and absence of privilege escalation on a full, unmodified embedded kernel with a high
level of automation.

Keywords: static analysis, memory analysis, OS verification

Antique
Paris

iv Abstract

Vérification automatisée de code système à l’aide d’abstractions mémoire basées sur le typage

Résumé

Les logiciels étant des composants essentiels de nombreux systèmes embarqués et de nombreux systèmes d’informa-
tion, un dysfonctionnement logiciel peut entraîner d’importants dommages ou des failles de sécurité. De nouveaux
bugs et de nouvelles vulnérabilités sont trouvés régulièrement dans les programmes existants ; une grande partie
d’entre eux est causeé par des violations de la sûreté mémoire. En particulier, le code bas niveau, écrit dans des
langages de programmation qui offrent peu de garanties de sûreté, est le plus susceptible de contenir ce type de
bug. Malgré cela, écrire dans un langage bas niveau reste parfois nécessaire pour des raisons de performance, ou
pour accéder directement aux fonctionnalités du matériel. Les méthodes formelles peuvent permettre de vérifier la
sûreté des programmes bas niveau, mais les techniques automatisées de vérification de propriétés mémoire, telles
que les analyses de forme, nécessitent encore un effort manuel important, ce qui est un obstacle à une adoption
large.
Dans cette thèse, nous proposons une analyse automatisée facilement applicable, basée sur un système de types
exprimant des invariants structurels sur la mémoire, précis jusqu’au niveau de l’octet. Cette analyse, que nous
formalisons dans le cadre de l’interprétation abstraite, offre un compromis entre les analyses de forme, précises et
sensibles au flot de contrôle, et les analyses de pointeurs, qui sont insensibles au flot de contrôle mais passent très
bien à l’échelle. Elle peut être appliquée à du code bas niveau avec peu d’annotations manuelles. Nous montrons
comment cette analyse basée sur les types peut être complémentée par des prédicats de pointeurs conservés et
reportés, afin de supporter précisément des motifs fréquents en code bas niveau tels que l’initialisation de structures
de données. Nous démontrons l’efficacité et l’applicabilité de l’analyse en vérifiant la conservation d’invariants
structurels (qui impliquent la sûreté mémoire spatiale) sur des programmes C et du code machine, montrant qu’elle
peut être utile pour éliminer toute une classe de failles de sécurité.
Nous appliquons ensuite notre analyse à des exécutables de noyaux embarqués, et nousmontrons que nos invariants
à base de types permettent de vérifier l’absence d’erreurs à l’exécution et l’absence d’escalade de privilèges. Pour cela,
nous introduisons le concept de propriété implicite, c’est-à-dire de propriété qui peut être définie sans référence
à un programme en particulier, qui se prêtent bien à la vérification automatique ; et nous montrons que l’absence
d’escalade de privilèges est une propriété implicite. La vérification paramétrée, c’est-à-dire la vérification de noyaux
indépendamment du code et des données des applications, comporte plusieurs défis, comme le besoin de résumer la
mémoire ou bien la dépendance à une précondition complexe sur l’état initial. Nous proposons une méthodologie
pour les résoudre à l’aide de notre technique d’analyse. À l’aide de cette méthodologie, nous vérifions l’absence
d’erreurs à l’exécution et l’absence d’escalade de privilèges sur un noyau entier sans modification, avec un haut
niveau d’automatisation.

Mots clés : analyse statique, analyse mémoire, vérification d’OS

À Dany et Raz, pour la force.

Acknowledgments

Completing a PhD is no easy thing. I am grateful that my advisors, Matthieu Lemerre and Xavier Rival,
never spared their efforts to guide me across that bumpy land. I learned a lot during these three and a
half years.

I want to thank Alan Schmitt and Mihaela Sighireanu for accepting to review my thesis, and for
their detailed comments, as well as Timothy Bourke for his many suggestions for the final version;
Jean-Christophe Filliâtre for presiding the jury of my defense, and Julia Lawall and Timothy Bourke for
accepting to be part of that jury.

Thank you to all members of both laboratories in which I have worked during this PhD, Antique at
ENS and the LSL at CEA List. It was particularly pleasant to work in your company, and the LSL, where
I spent most of my time, is a particularly warm place where people go a long way to make everyone’s
life enjoyable.

Sur une note plus personnelle, merci aux collègues doctorants pour le soutien mutuel, en particulier
aux amis de Morzine, mais aussi aux amis de randonnée et d’escalade. Pardon de ne pas vous citer tous,
mais je pense que vous vous reconnaîtrez. Un merci particulier à Maxime Jacquemin et Julien Girard
pour la gestion de crise et pour leur amitié en général.

Comment ne pas aussi être reconnaissant envers mes parents et mes frères et sœurs, qui ont été là
pour moi quand il le fallait. Envers Guerric Chupin et Louise Bollache, pour être des points de repère.

J’ai enfin une dette envers les streamers Dany et Raz, dont les lives ont souvent été mon narcotique ;
mais qui, par leurs leçons de philosophie et leur exemple, m’ont appris que j’étais libre, et que les rochers
sont faits pour être poussés. Cette thèse n’aurait peut-être pas vu le jour sans eux.

vii

viii Acknowledgments

Contents

Abstract iii

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 The need for formal verification of low-level code 1
1.2 The need for automated analyses . 2
1.3 The case for a type-based memory abstraction . 3
1.4 Overview of the method and illustration on an OS kernel 4

1.4.1 Motivation . 4
1.4.2 Kernel description . 5
1.4.3 Verification method . 6

1.5 Contributions and outline of the thesis . 7

I Type-based Shape Analysis 9

2 Related work on static analysis of memory 11
2.1 Pointer analysis . 11

2.1.1 Original works . 12
2.1.2 Enhancing precision with richer pointer abstractions 12
2.1.3 Algorithmic improvements over Andersen-style analyses 13

2.2 Shape analysis . 13
2.2.1 Shape analysis based on three-valued logic 14
2.2.2 Shape analysis based on separation logic . 14
2.2.3 Other shape analysis techniques . 15

2.3 Type-based memory analyses . 16

3 Abstract interpretation framework 19
3.1 General mathematical notations . 19
3.2 The While-memory language . 20
3.3 Notion of abstraction . 22

3.3.1 Operator abstraction . 24
3.3.2 Relational and non-relational numerical abstractions 24

3.4 Abstract semantics of While-memory . 27
3.4.1 Abstract semantics of expressions . 27

ix

x Contents

3.4.2 Abstract semantics of simple statements . 27
3.4.3 Conditionals and loops . 27

3.5 Soundness of the abstract semantics . 32

4 Physical types 33
4.1 Overview example and informal presentation . 33
4.2 Definitions . 36

4.2.1 Labellings . 38
4.2.2 Subtyping between address types . 38
4.2.3 Types as sets of values . 40

4.3 Typed semantics . 42
4.3.1 Typed semantics of expressions . 42
4.3.2 Typed semantics of statements . 43

4.4 Extending the type system: directions and pitfalls 45
4.4.1 Invalid address subtyping rules . 46
4.4.2 Possible extensions . 47

5 Type-based shape abstract domain 49
5.1 Informal overview of the abstraction . 51
5.2 Abstract physical types . 51

5.2.1 Motivation . 51
5.2.2 Definition . 52
5.2.3 Abstract subtyping . 52
5.2.4 Abstract join . 54

5.3 State abstraction . 56
5.3.1 Type-based shape domain . 56
5.3.2 Combined shape-numeric abstraction . 56

5.4 Abstract semantics . 57
5.4.1 Abstract semantics of expressions . 58
5.4.2 Soundness of expression semantics . 60
5.4.3 Abstract semantics of statements . 61
5.4.4 Soundness of the abstract semantics . 65
5.4.5 Approximation of aliasing relations . 66

5.5 Analysis example . 67
5.6 Conclusion and related work . 68

6 Retained and staged points-to predicates 71
6.1 Informal overview . 71
6.2 Retained points-to predicates . 74

6.2.1 Abstraction . 74
6.2.2 Abstract semantics of expressions . 76
6.2.3 Abstract semantics of statements . 77
6.2.4 Soundness of the abstract semantics . 78

6.3 Staged points-to predicates . 79
6.3.1 Abstraction . 79
6.3.2 Example analysis using staged points-to predicates 80
6.3.3 Abstract semantics of expressions . 80
6.3.4 Abstract semantics of statements . 82
6.3.5 Soundness of the abstract semantics . 84

Contents xi

6.4 Combining retained and staged points-to predicates 85
6.5 Conclusion . 85

7 Practical analysis of C and machine code programs 87
7.1 Analysis of C programs . 88

7.1.1 Semantics of programs with arbitrary control flow 89
7.1.2 Under-specified behaviors . 90
7.1.3 Manual annotations required by the type-based shape domain 90

7.2 Analysis of executables . 91
7.2.1 A semantics of machine code . 92
7.2.2 Incremental inference of control flow in the presence of dynamic jumps 93
7.2.3 Delineation of functions . 96
7.2.4 Product with an “array of bytes” memory abstraction 98
7.2.5 Numerical abstraction . 100

7.3 Experimental evaluation . 100
7.3.1 Research questions . 100
7.3.2 Methodology . 101
7.3.3 Results . 101
7.3.4 Discussion and conclusions . 104

7.4 Related work on static analysis of low-level code 104
7.4.1 Analysis of machine code . 104
7.4.2 Analysis of low-level C . 105

II End-to-end Verification of Embedded Kernels 107

8 Kernel semantics and implicit properties 109
8.1 System loop . 109

8.1.1 Attacker model and trusted components . 111
8.1.2 Example kernel . 111

8.2 State properties . 112
8.2.1 Absence of run-time errors . 112

8.3 Absence of privilege escalation as a state property 113
8.3.1 Definition . 113
8.3.2 A semantics suitable for parameterized verification 113

8.4 Implicit properties . 115
8.5 In-context verification of kernels . 116

8.5.1 Abstracting the attacker-controlled transition 116
8.5.2 Illustration on the example kernel . 117

9 Parameterized verification of OS kernels 119
9.1 Shortcomings of in-context verification . 120
9.2 Method overview . 120
9.3 Illustration on the example kernel . 121

9.3.1 Lightweight type annotation . 121
9.3.2 Parameterized static analysis of the kernel 121
9.3.3 Base case checking . 123
9.3.4 Discussion . 123

9.4 Differentiating boot and runtime code . 124
9.4.1 Difficulties with the verification of the initialization code 124

xii Contents

9.4.2 Principle of the differentiated verification 124
9.4.3 Base case checking . 125

9.5 Conclusion . 126

10 Kernel verification case study and experimental evaluation 129
10.1 Experimental setup . 130

10.1.1 Asterios . 130
10.1.2 EducRTOS . 131
10.1.3 Analysis implementation . 131
10.1.4 Experimental methodology . 132

10.2 Soundness check . 132
10.2.1 Protocol . 132
10.2.2 Results . 133
10.2.3 Conclusions . 133

10.3 Real-Life Effectiveness . 133
10.3.1 Protocol . 133
10.3.2 Results . 134
10.3.3 Conclusions . 135

10.4 Evaluation of the method . 135
10.4.1 Protocol . 135
10.4.2 Results . 136
10.4.3 Conclusions . 136

10.5 Genericity . 137
10.5.1 Protocol . 137
10.5.2 Results . 137
10.5.3 Conclusions . 137

10.6 Automation and Scalability . 137
10.6.1 Protocol . 137
10.6.2 Conclusions . 138

11 Comparison with existing works on system and OS verification 139
11.1 Classification and positioning . 139

11.1.1 Degree of automation . 139
11.1.2 Target property . 141
11.1.3 Trusted computing base (TCB) and verification comprehensiveness 142
11.1.4 Features of verified kernels . 142
11.1.5 Verifying systems with unbounded memory 142

11.2 List of kernel verification efforts . 143

Conclusion 145

Bibliography 147

A Detailed verification results of all EducRTOS variants 159

Glossary 163

Chapter1
Introduction

Software runs thousands of critical infrastructures. Yet, most of it potentially contains severe security
flaws that are yet to be discovered. In 2014, a vulnerability in the OpenSSL cryptography software,
today known as Heartbleed, was disclosed. It allowed an attacker to steal a web server’s private keys,
as well as users’ passwords [Mit14]. About half a million servers were affected, representing about 17 %
of the Internet’s “secure” web servers. Only the prompt reaction of server administrators to upgrade
their software limited the consequences of the security flaw.

As recently as 2021, two privilege-escalation vulnerabilities have been found in the Linux ker-
nel [Mit21a] and in the sudo system utility program [Mit21b].

These three vulnerabilities have in common of exploiting memory safety violations. The precise
definition of memory safety heavily depends on the programming language, and possibly even on the
compiler [AHP18]. However, a reasonable and intuitive account of it can be given by saying that mem-
ory safety is the conjunction of two properties:

• Spatial memory safety specifies that every memory access is performed on a valid pointer to an
object, and into the bounds of the referenced object;

• Temporal memory safety specifies that an object is no longer accessed after it has been deleted
(freed), and in some languages like C, that only a valid pointer to an object should be freed.

1.1 The need for formal verification of low-level code

In this thesis, we call “low-level” programs that utilize the capabilities of the hardware architecture,
such as memory or system instructions, without safety checks, often for performance reasons.

According to the 2020 ranking of the MITRE corporation [Mit20], memory corruption is the second
most dangerous attack vector. In 2019, Microsoft reported that 70 % of vulnerabilities reported to them
had been caused by a memory safety bug [Mil19], a proportion that has been stable from 2006 to 2018.
Such bugs can only appear in languages that do not enforce memory safety, such as C or assembly code.

Despite its lack of safety, C has been extremely popular for decades and remains the most used lan-
guage for writing performance-critical code, or code that performs low-level operations. This historical
success is probably due to its relative simplicity, its wide portability across hardware platforms, and the
control it provides on hardware resources.

One approach to avoid many software vulnerabilities would be to write programs in so-called high-
level languages, which offer more safety guarantees (such as memory safety), and then interpret them or
compile them to lower-level languages for execution. In recent years, the rise in popularity of the Rust

1

2 CHAPTER 1. Introduction

language [KN19], a language with a memory-safe and thread-safe subset with a fine-grained control
over resources similar to C, shows a trend in that direction.

However, Rust programmers are often forced to use the unsafe keyword, which steps out from the
safe subset of the language [ECS20]. In addition, this approach does not account for the billions of lines
of C that are still in active use, and probably contain many undiscovered vulnerabilities. What’s more,
foundational programs such as OS kernels will in any case need to use intrinsically unsafe assembly
languages, and kernels are themost critical software components of most information systems. Methods
to verify the correctness of low-level code are therefore needed.

1.2 The need for automated analyses

Several techniques exist to verify the correctness of programs. The first task consists in precisely defin-
ing the specification, that is, the set of acceptable behaviors for the program. Then, one must prove
with a high level of confidence that the program respects its specification. However, we know by Rice’s
theorem that all non-trivial, semantic properties of programs are undecidable [Ric53]. In other words,
it is impossible to create a program analysis with all following properties:

• Sound. If the analysis decides that the program complies with the specification, it is indeed the
case.

• Complete. If the analysis decides that the program does not comply with the specification, it is
indeed the case: the program exhibits at least one behavior defined as unacceptable.

• Automated. The analysis is a standalone algorithm whose sole input is the program to verify, and
does not require further human intervention.

• Generic. The analysis should be applicable to arbitrary programs.

Designing a verification method requires to sacrifice at least one of those four properties. Each choice
results in a different technique:

• Testing, i.e. running the program on a wide variety of inputs, can help to eliminate a large number
of bugs. However, it is not a sound method: the range of possible entries is usually too vast to
perform exhaustive testing, and therefore testing does not allow to prove the absence of bugs.

• Giving up completeness leads to analyses that may fail to verify the desired specification even on
programs that respect it; a situation known as false alarms. Abstract interpretation [CC77] is a
theoretical frameworks for constructing sound, automated program analyses.

• Assisted program proof consists in encoding the semantics of the programming language into the
language of a proof assistant or an SMT solver, and then using these tools to verify the properties
of interest on the program. However, this process is not automated in general: it may require
human input, typically to specify loop invariants, or to assist the proving tool.

• Finally, one can opt to give up the genericity of verification. When program states describe a
finite space, model checking [CE82; QS82] can allow to verify arbitrary properties, with various
techniques to deal with combinatorial explosion.

While model checking is relevant in specific domains, we are interested in this thesis in a verifica-
tion method for low-level code that is widely applicable, which mandates genericity. Similarly, while
program proof is extremely powerful, it can be very costly in manual work: proving the correct-
ness of the seL4 kernel with respect to a functional specification required about 200,000 lines of proof
script [Kle+09]. In addition, verifying low-level code requires expertise in both low-level computing
and program proof, which deters wide applicability.

In this thesis, we will use the abstract interpretation framework to design generic, automated and
sound analyses to verify safety properties on low-level programs, such as unrestricted C code, assembly
code or even binary programs.

1.3. The case for a type-based memory abstraction 3

However, analyzing low-level code is particularly challenging. It often has a dynamic control flow
—due to computed jumps in assembly, or function pointers in C— whose resolution requires an analysis
of possible runtime values, and contains low-level memory manipulations such as unrestricted pointer
arithmetic, which can lead to accessing arbitrary addresses in memory. To make matters worse, in
binary code, there is no a priori separation between code and data, or between different values on the
stack; therefore a small imprecision on a memory address can prevent the analysis from determining
the effect of reading or writing at that address.

For all these reasons, low-level code analysis is prone to imprecisions, which can easily snowball up
to a point where the analysis cannot prove any property.

1.3 The case for a type-based memory abstraction

Among the hard points mentioned above, low-level memory manipulation is arguably the hardest.
There is no type system in assembly or binary, and in C, typechecking does not guarantee memory

safety, due to unchecked array accesses, type casts or pointer arithmetic.
Like many languages, C allows to manipulate data structures of unbounded size —i.e. their size

cannot be determined by a static analysis, like when traversing a linked list whose size is a parameter,
for instance. These data structures may exhibit complex sharing patterns, i.e. the graph of points-to
relations between values can be arbitrary. And unlike in higher-level languages, the semantics of C and
assembly make it very easy to cause crashes or undefined behaviors whenmanipulating such structures.
In other words, even the memory safety of programs depends on intricate memory properties. The
analysis of memory is therefore a crucial point of analyses of low-level code.

On the lower end of the precision spectrum, pointer analyses, pioneered by Andersen [And94] and
Steensgaard [Ste96], consist in abstracting pointer values by the set of program variables they may
point to. Such analyses are very efficient and therefore widely implemented for optimization purposes.
However, they are unable to infer any information about the organization of data structures in memory,
beyond properties of pointer variables and expressions in the program. This makes them often unable
to prove even base properties like memory safety.

On the other end of the spectrum are shape analyses, able to infer complex properties about data
structures in memory, including separation or connectivity properties between memory regions and
well-formedness of data structures (such as doubly-linked lists or red-black trees), including unbounded
data structures. Such unbounded structures are represented in a summarized form in the analysis’s in-
ternal state, and the analysis procedures are able to refine that summarized formwhen needed to account
precisely for memory locations that are read or written. Conversely, they are also able to generalize a
set of memory states into a summarized form, which is necessary in order to ensure termination of the
analysis. Such analyses include abstract domains based on separation logic [DOY06; CR08] and analy-
ses based on three-valued logic [SRW99]. Shape analyses have been used successfully to prove memory
safety, as well as the preservation of structural invariants, in various data structure libraries in C or
Java [Li+17; DPV11; Hab+12; Cal+11].

On the negative side, shape analyses have yet to scale to large codebases. Possible reasons are the
necessity to record disjunctions of possible states in the analysis, which canmake the analysis state grow
exponentially and hinders scalability; or the fact that using shape analysis requires in-depth knowledge
of static analysis to encode data structure invariants into their annotation language, to understand the
origin of false alarms, and to provides hints to the analysis tool in order to eliminate those alarms.

However, useful properties can be proved by verifying simpler invariants than those abstracted
by shape analyses. In this thesis, we propose an analysis that occupies a new spot on the precision
spectrum, between pointer analyses and existing shape analyses. Instead of requiring that all objects be
separated in memory, which requires fine-grained tracking, our approach only verifies that objects of

4 CHAPTER 1. Introduction

different types are separated, allowing for efficient verification of the preservation of expressive typing
invariants —which implies, notably, spatial memory safety—without having to specify sharing patterns.

To achieve such a verification on low-level programs, we define a type system, whichwe call physical
types, that expresses the layout of values in memory down to the byte level. It has some common traits
with Chandra and Reps’s physical type checking algorithm [CR99], that our analysis generalizes. This
approach allows to re-use the types used in the C code, improving automation.

1.4 Overview of the method and illustration on an operating system
kernel

We will illustrate our method on the case of OS kernels verification, for which it is a good fit as we
explain below.

1.4.1 Motivation

Operating systems, and more specifically operating system kernels, hold a particular position in the soft-
ware world. They are the cornerstone of the security of most computer systems, making it particularly
critical for them to be devoid of bugs.

Manually proving a kernel using a proof assistant or deductive verification can ensure that the
kernel complies with a formal specification, thus reaching a high level of safety and security. But such
a verification is out of reach of most actors, particularly in embedded systems development, because of
the tremendous proof efforts involved (e.g. 200,000 lines of proof script for seL4 [Kle+09] or 100,000
for CertiKOS [Gu+16]) and of the difficulty to find experts in both systems and formal methods. For
such actors, the ideal method would be an automated verification where the system developers only
provide their code and, with very little configuration or none at all, run the tool to verify the properties
of interest. Automation is all the more necessary for embedded kernels that are typically produced in
many variants, depending on the target hardware and the applications to run.

Automated verification of complex, high-level specifications of kernels is currently out of reach of
verification techniques. But two fundamental properties can be verified with a high level of automation
using our analysis:

1. The absence of crashes, such as those caused by divisions by zero, illegal opcodes or illegal memory
access; we call this property the absence of runtime errors (ARTE).

2. The absence of privilege escalation (APE). Privilege escalation occurs when a malicious application
bypasses kernel protections and obtains kernel privileges. In the case of hypervisors, this corre-
sponds to virtual machine escape. In fact, no safety or security property can be proved on the
kernel unless APE holds.

Both properties will be defined more precisely in Chapter 8 where we detail the application of our
analysis method to OS kernels.

In addition, kernel code is very low-level and heterogeneous: it is a mix of low-level C, assembly
code and linker scripts (in the case of embedded kernels). To perform a comprehensive verification, a
solution is to analyze the kernel executable.

Finally, as we illustrate below, analyzing kernels involves to deal with complex memory layouts, and
in particular with unbounded structures containing the characteristics and data of applications.

1.4. Overview of the method and illustration on an OS kernel 5

kernel entry kernel exit

kernel runtime

user code

Figure 1.1: Alternated execution of kernel and user code.

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur->next;
ctx = &cur->ctx;
load_protection();
load_context();

}

typedef struct { Int8 pc, sp, flags; } Context;

typedef struct Task {
Memory_Table *mt;
Context ctx;
struct Task *next;

} Task;

Figure 1.2: Code of a simple embedded OS kernel and associated type of task data.

1.4.2 Kernel description

In essence, a kernel is a program whose execution alternates with the execution of the application
code, and sets up the appropriate hardware protections before giving hand to applicative code again
(Figure 1.1). We shall term user code the code of applications in general. The kernel runtime starts
executing whenever an interrupt occurs, either a software interrupt (e.g. an application performed a
system call) or a hardware interrupt (e.g. due to a timer firing, or an illegal memory access).

In the context of kernel verification, the user code is unknown.
Consider the extremely simplified kernel whose code is in Figure 1.2. Each task is assigned a mem-

ory table describing the memory region it should have access to, a context in which program counter
(pc), stack pointer (sp) and hardware-related flags (flags) are stored. In addition, each Task structure
contains a pointer to the next task to be scheduled, the whole forming a circular list.

Every time the kernel runtime executes, it saves the context of the current task, switches to the
next task, and configures memory protection appropriately for that task, by setting a special register to
instruct the Memory Protection Unit (MPU) to enforce the access policy described in the task’s memory
table. Memory_Table structures (not detailed here) describe intervals of authorized addresses.

kernel
data

application
data

a0 cur : a7 a1 ctx: a8

a2 :
Task[2] ae c8 d5 01 a7 ae c8 d8 01 a2

Figure 1.3: Example state of the memory reachable by the kernel.

6 CHAPTER 1. Introduction

Memory layout and parameterization Let us now look at an example memory layout of this system
(Figure 1.3). For simplicity, we represent it as it would be on a fictitious 8-bit hardware. It represents
a system composed of two tasks sharing the same memory table. However, the kernel is independent
from the tasks: the same kernel code could manage a system composed of thousands of tasks, each with
different memory rights. We say that the kernel is parameterized by the application data. A consequence
of this parameterization is that the addresses of many system objects (e.g. of type Task or Memory_Table)
vary and are not statically known in the kernel.

1.4.3 Verification method

The static analysis will compute an over-approximation of the possible system states at each program
location. A state of the system consists in the value of each variable, register, and the content of each
memory cell.

For instance, let us suppose that, at the beginning of the function runtime(), the variable cur con-
tains either the value 0xa2 or 0xa7. Then it is quite straightforward to verify that the two dereferences
of cur at the second and third line of the function are safe. The expression cur->next dereferences one
of the values 0xa6 and 0xab, which are both valid memory address. The result is either 0xa7 or 0xa2,
therefore the instruction cur = cur->next leaves the set of possible values for cur, namely {0xa2, 0xa7},
unchanged. From that we deduce that the dereference cur->ctx that follows is also safe, since the
dereferenced address is either 0xa3 or 0xa8.

More generally, the absence of runtime errors is a state property: it can be proved by finding a state
invariant on the system. We show in Chapter 8 that the absence of privilege escalation is also a state
property, and therefore can be verified by the same technique.

In order to compute such an invariant, a static analysis requires an abstraction of memory. A very
simple abstraction would be to use a flat model: to view memory as an array of bytes, and represent
memory addresses by their numeric values. Abstract memory states computed by the analysis would
then resemble Figure 1.3. This approach has been taken by other works in kernel verification [Dam+13;
Nel+19; Nor20]. However, it prevents parameterized verification: the kernel cannot be analyzed inde-
pendently from the tasks. In addition, it poses scalability issues: when analyzing a system with 1,000
tasks, all corresponding structures have to be enumerated. It is also fragile: tiny imprecisions on the nu-
meric addresses can cause huge precision loss. This would happen for instance if, in our example kernel,
the set of possible values for cur, {0xa2, 0xa7}, was over-approximated by the interval [0xa2, 0xa7].

Lifting those limitations requires an analysis capable of abstracting the numeric values of addresses,
and manage structures of unbounded size, while conserving the structure of objects and the links be-
tween them. The abstract domains presented in this thesis meet these requirements. We show in Part II
that it is able to represent data structures with sufficient precision to prove ARTE and APE on real OS
kernels automatically, with a very low annotation burden.

Our method could be summarized by the following steps:

1. Define a set of physical types that describe the structure of task data.

2. When analyzing the kernel runtime code, abstract values by both a numeric component and a
physical type. Our analysis both infers types of values and verifies that all operations are well
typed. As we show, this is sufficient to verify spatial memory safety.

3. Our abstraction is also able to express numerical properties on values within data structures,
which can be used to eliminate non memory-related runtime errors (such as divisions by zero),
and to verify that the kernel sets up memory protections appropriately, thus verifying absence
of privilege escalation. For example, the types should express the fact that the Memory_Table of
each task gives access to a memory region disjoint from kernel memory.

1.5. Contributions and outline of the thesis 7

1.5 Contributions and outline of the thesis

The objective of the present thesis is to define an efficientmemory analysis to verify structural invariants
expressed as type constraints, and to demonstrate the interest of such invariants. We evaluate the
effectiveness and efficiency of the analysis by verifying spatial memory safety on a set of low-level C
and binary programs, and the interest of type-based invariants by verifyingARTE andAPE on embedded
OS kernels as exemplified in Section 1.4.

We make the following contributions:

• We define a new abstraction able to summarize memory by means of a type invariant, as well
as the algorithms to use that abstraction in a program analysis, formalized in the framework of
abstract interpretation (Chapters 3 to 5).

• Given the insufficient precision of this analysis on some ubiquitous programming patterns, we
introduce two independent abstractions (Chapter 6) to make the precision suitable for proving
the properties of interest: the abstract domain of retained points-to predicates refines information
about the memory regions most recently accessed, allowing strong updates without introducing
disjunctions; the abstract domain of staged points-to predicates allows the analysis of programs
that temporarily violate typing invariants, which is crucial for precision, in particular on programs
that perform initialization of data structures.

• Based on these abstract domains, we construct two analysis tools: one working on C source code,
the other on binary executables. We use them to evaluate the applicability of our abstractions
to verify spatial memory safety and basic structural invariants on a set of benchmark programs
(Chapter 7).

• We formalize the notions of absence of runtime errors and absence of privilege escalation in OS
kernels (Chapter 8), and use our binary analysis to prove them on embedded OS kernels, including
a kernel used in the industry (Chapters 9 and 10). Finally, we review the existing works on kernel
verification (Chapter 11) and discuss the positioning of this work relative to them.

The work presented in this thesis was published in two articles:

• The work presented in Chapters 4 to 7 has been published in a summarized version in the fol-
lowing paper: Olivier Nicole, Matthieu Lemerre, and Xavier Rival. “Lightweight Shape Analysis
Based on Physical Types”. In: 23rd International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’22). 2022.

• The work presented in Chapters 8 to 11 has been published in the following paper: Olivier Nicole,
Matthieu Lemerre, Sébastien Bardin, and Xavier Rival. “No Crash, No Exploit: Automated Veri-
fication of Embedded Kernels”. In: IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS ’21). 2021. This paper was attributed the RTAS 2021 Best Paper Award.

8 CHAPTER 1. Introduction

Part I

Type-based Shape Analysis

Chapter2
Related work on static analysis of
memory

Outline of the current chapter

2.1 Pointer analysis 11
2.1.1 Original works . 12
2.1.2 Enhancing precision with richer pointer abstractions 12
2.1.3 Algorithmic improvements over Andersen-style analyses 13

2.2 Shape analysis 13
2.2.1 Shape analysis based on three-valued logic 14
2.2.2 Shape analysis based on separation logic 14
2.2.3 Other shape analysis techniques . 15

2.3 Type-based memory analyses 16

Chapter 1 gave a brief account of pointer and shape analyses and our positioning between them. This
chapter aims at giving a more comprehensive picture of static analyses that are concerned with memory
properties. We first describe pointer analyses (Section 2.1) and shape analyses (Section 2.2), which
constitute the two opposite ends of the expressiveness spectrum. We then survey a third line of work:
memory analyses based on type systems, to which our work is related (Section 2.3). We present here a
survey of existing works; a comparison with our work can be found later in Section 5.6.

This chapter is focused on memory analysis, but a survey of operating system verification can be
found in Chapter 11.

2.1 Pointer analysis

Pointer analyses attempt to determine properties of pointer values. The term alias analysis is also
often used in similar contexts; although the terminology is not entirely unified across literature, pointer
analysis usually seeks to determine to which objects a pointer variable may point, whereas alias analysis
focuses on the question of whether two pointers may be equal, or point to overlapping objects (alias).
An alias analysis can be derived from the result of a pointer analysis.

11

12 CHAPTER 2. Related work on static analysis of memory

Unlike shape analyses, pointer analyses do not attempt to infer properties of memory objects that
are not directly pointed to by variables of the program, or —for some analyses— by expressions in the
program. Therefore, while they are useful to compute aliasing relations, they are unable to infer many
properties, such as validity of pointers, reachability, or preservation of structural invariants, especially
when the data structures involved are of unbounded size.

However, the simplicity of the static heap representationmakes pointer analysesmuchmore tractable
than shape analyses in terms of complexity, allowingmost of them to be applied as whole-program anal-
yses to millions of lines of code.

2.1.1 Original works

The best-known pointer analysis technique has been introduced by Andersen [And94]. This analysis
computes points-to sets for all pointer variables, i.e. sets of memory objects to which the variable may
point. Points-to sets are inferred in a flow-insensitive way. To do that, it infers subset constraints from
statements of the program, then runs a constraint solving algorithm to obtain a superset of the points-to
set for each variable. The whole process runs in polynomial time in the size of the program.

As in all pointer analyses, the computed points-to sets are in fact sets of abstract memory objects.
Indeed, since the number of memory objects referenced by a pointer during program execution is not
bounded a priori, some form of abstraction is necessary for the analysis to terminate. In case of Ander-
sen’s analysis, memory objects are abstracted by their allocation site, i.e., labels of instructions where
the object is allocated.

Steensgaard [Ste96] computes similar points-to sets, but using a unification-based approach: ev-
ery assignment to a pointer value gives lieu to the unification of two points-to sets. Like in Andersen’s
analysis, the computed points-to sets are flow-insensitive. This approach is strictly less precise than An-
dersen’s, but permits better performance, as it can be implemented using union-find algorithms to run
in almost-linear time. However, Andersen-style analyses are now more popular, because their higher
precision is considered worth the slight performance cost [SB15]. However, we can also mention that
Das [Das00] proposes a middle ground between the two algorithms, by representing directional points-
to constraints à la Andersen between memory objects that are directly pointed by program variables,
but unifies points-to sets à la Steensgard for objects further down the points-to chains. By this trade-off,
Das achieves a worst-case quadratic time complexity in the size of the program.

2.1.2 Enhancing precision with richer pointer abstractions

In order to improve the precision of pointer analyses without too much degradation of performance,
context-sensitivity has emerged as an effective variation of Andersen-style analyses. Context-sensitive
analyses add context information to local variables and abstractmemory objects, and the analysismerges
information over all executions that result in the same context, but keeps information separate for
different contexts. The definition of “context” depends on the analysis flavour. Two main kinds of
context-sensitivity have been explored: call-site sensitivity and object sensitivity.

Call-site sensitivity qualifies memory objects with a sequence of call sites (i.e., labels of instructions
where a function is called) corresponding to the call stack at the time of their allocation. Points-to
information is then merged or kept separate depending on the current call stack.

Object sensitivity only applies to object-oriented languages. It uses as context the allocation site of
the object on which the current method is called (in object-oriented languages such as Java, all function
calls are method calls), or possibly sequences of allocation sites, corresponding to allocation site of the
receiver object O of the current method, the allocation site of the allocator object (O′) of O, etc.

As an object-sensitive analysis can sometimes suffer from combinatorial explosion, Smaragdakis,
Bravenboer, and Lhoták [SBL11] propose type-sensitive analysis as a similar but more scalable approach.

2.2. Shape analysis 13

Type sensitivity is identical to object sensitivity, except that types are used as context elements instead
of allocation sites.

2.1.3 Algorithmic improvements over Andersen-style analyses

Andersen’s analysis can be reformulated as the computation of the transitive closure of a points-to
graph. For this reason, cycle detection methods can be used to optimize them, because all nodes in the
same cycle have identical points-to sets and can be collapsed together. In particular, Hardekopf and Lin
[HL07] introduce hybrid cycle detection (HCD), a method that partitions a cycle detection algorithm
into an off-line and on-line analysis, and show that it improves the performance of cycle detection
algorithms. Applying HCD to the other algorithm that they introduce, namely lazy cycle detection,
improves significantly over the state of the art in terms of analysis time.

All analyses mentioned up to now are flow-insensitive, meaning that the computed points-to rela-
tions hold globally, independently of the program point. Flow-sensitive analyses are generally more
precise than flow-insensitive ones, but are also less scalable. In a later paper, Hardekopf and Lin [HL11]
note that flow-sensitive analyses can be made more scalable by running them on a so-called “sparse”
representation of the program, such as the static single assignment (SSA) form [Cyt+91], which relates
variables to their uses. However, constructing this sparse representation requires the very points-to
information that the analysis is meant to compute. Hardekopf and Lin propose a staged analysis, that
first computes this “def-use” information conservatively, by running a flow-insensitive (and therefore
fast) pointer analysis—which they call the “auxiliary” analysis— enabling a flow-sensitive analysis to be
performed sparsely. Using Hardekopf and Lin [HL07] as their auxiliary flow-insensitive analysis, they
are able to perform a flow-sensitive, Andersen-style analysis of a program of 1.9 million lines of code in
14 minutes.

Other directions to improve scalability include modular [WL95; CH00; CRL99] and demand-driven
[SXX12] analyses. Modular analyses compute for each function a summary of its effect, which can be
used in the rest of the analysis when these functions are called, instead of re-analyzing the function for
every different context. Cheng and Hwu [CH00] propose function summaries consisting in sets of pairs
of access paths, representing possible aliasing relations created by the function. Demand-driven pointer
analyses compute only the results necessary to answer a query at a given program location. Shang, Xie,
and Xue [SXX12] combine demand-driven analysis with function summaries to answer to queries in a
context-sensitive way.

2.2 Shape analysis

Unlike pointer analysis, shape analysis techniques attempt to retain information about the heap struc-
tures manipulated by the program, notably on the links between heap objects. This enables shape
analysis methods to verify properties stronger than mere memory safety or aliasing relations, such as
the reachability of some memory cells, or the preservation of some data structure invariants (e.g. the
invariants on pointers and values that characterize a doubly-linked list or a red-black tree).

In order for the analysis to terminate, or simply to prevent the static heap representation from
growing too large, shape analyses must be able to summarize regions of arbitrary size in a finite way.
In addition to summarization, in order to precisely take into account the effect of memory writes, shape
analyses are able to temporarily refine a summary into a more precise representation, a process often
called materialization or focus. Conversely, it must be able to turn a non-summarized heap represen-
tation into a summary, possibly at the cost of some precision. To sum up, shape analyses are able to
represent precise properties of data structures in a summarized way, and are able to go back and forth
between summarized and non-summarized representations.

14 CHAPTER 2. Related work on static analysis of memory

2.2.1 Shape analysis based on three-valued logic

Shape analysis based on three-valued logic [SRW99], and the associated TVLA tool, view each heap
object as a node. Object fields, as well as variables, are represented using logical predicates called the
core predicates. Besides core predicates, TVLA also allows the user to define a set of instrumentation
predicates, defined in a language of first-order logic with transitive closure. Instrumentation predicates
can be simple points-to predicates, or global ones, specifying reachability or acyclicity properties. These
predicates give a complete picture of the information stored in a TVLA heap: a set of nodes and the
predicates that hold among them. The predicate facts are simply a conjunction of atomic literals, which
have the form P(𝑛1, 𝑛2,…) or ¬P(𝑛1, 𝑛2,…). The combination of nodes and predicate information is
called a structure in TVLA.

Abstraction is introduced with the concepts of summary node, which represent one or more concrete
nodes, and by allowing predicates to take the value ½, meaning “don’t know”, in addition to “true” and
“false”. A notion of embedding (denoted ⊑) can be derived: S1 ⊑ S2 expresses that S1 is more precise
than S2 in the sense that its predicates refine the predicates of S2. The concretization of a structure S
can be defined as:

γ(S) = {S0 ; S0 is concrete ∧ S0 ⊑ S}
However, the embedding relation⊑ does not allow to define a join operation between any two structures.
To perform program analysis, some form of join is necessary; therefore, the abstract memory represen-
tation in TVLA is a finite disjunction of structures. To ensure that the number of disjunctions remains
bounded, canonicality constraints are enforced on the structures at selected program points (including
loop heads), weakening some structures (i.e. losing precision) if necessary. The shape analysis can then
be performed by abstract interpretation (see Chapter 3 for a definition of the abstract interpretation
framework).

The TVLA tool can express and verify an extremely rich range of properties. It has been used in
practice to verify memory safety and other higher-level properties of libraries [Dor+08]. It can be,
however, expensive in terms of resources [Dor+08; McC10]. This may be due to the global nature of
TVLA predicates, which can depend on nodes arbitrarily far away from one another.

On the other hand, the heap representation of TVLA allows it to natively handle structures with
unstructured sharing, which are challenging for separation logic analyses.

2.2.2 Shape analysis based on separation logic

This family of shape analyses is based on the fact that reasoning over memory operations is much
easier when the modified memory cells can be precisely localized. This led to favor local reasoning by
using separation logic [Rey02; DOY06; CR08]. A separation logic formula describes a set of memory
states using points-to predicates and separating conjunction. Unbounded regions can be summarized by
inductive predicates [CR08].

In order to precisely calculate the effect of memory writes, the analysis can refine the representation
of a summarized region. This operation is known as the unfolding of a summary predicate. Conversely,
in order for the analysis to terminate, or simply to prevent the abstract representation from growing
too large, a memory region must sometimes be folded into an inductive predicate.

Analyses based on separation logic and inductive predicates have been used to verify complex mem-
ory properties such as preservation of data structure invariants using the Xisa [CR08], Predator [DPV11;
DPV13] and MemCAD [Li+17] tools. Xisa and MemCADmust be configured with user-provided induc-
tive predicates [CR08] that summarize linked data structures, such as linked lists or trees. The Predator
tool is more automated and requires no such configuration, however its scope is more limited as it only
handles various forms of singly- and doubly-linked lists (possibly nested or cyclic, with data point-
ers and some sentinel pointers), but not trees or direct acyclic graphs (DAGs) [DPV11]. Predator has

2.2. Shape analysis 15

been augmented to support low-level C programming patterns such as unrestricted pointer arithmetic,
pointers to a non-zero offset in a structure, manipulation of pointers to invalid targets, or block memory
operations [DPV13].

However, heap representation by separation logic makes it impossible to analyze structures with
“unstructured sharing” using the standard algorithms. An example of such a structure would be the
representation of a mathematical graph by adjacency lists, or a linked list containing pointers to the
nodes of a binary tree. Li et al. [LRC15] introduce set-valued inductive predicates in order to precisely
represent such data with “unstructured” sharing, and devise an analysis able to prove memory safety
and preservation of data structure invariants on a graph library.

Separation-logic-based analyses also need to introduce disjunctions of abstract states when unfold-
ing an inductive predicate, which can make the abstract state size increase exponentially. Sophisticated
canonicalization-based heuristics [DOY06] or semantic-based methods [Li+17] are required to prevent
that combinatorial explosion.

Another solution to scale up is to design a compositional shape analysis, that infers pre- and post-
conditions for each procedure. This has been realized in Facebook Infer [Cal+11], which makes use of
bi-abduction techniques to infer the missing pre-conditions on a code fragment to prove its memory
safety. This allows to analyze procedures out of context and infer several procedure summaries (i.e.
precondition–postcondition pairs) for each procedure; these summaries can be reused when the proce-
dure is called. This allows the tool to scale up impressively, as it is able to analyze a version of the Linux
kernel (3 million lines of code) in less than 3 hours, and infer correct pre- and postconditions for 60 %
of the procedures (although it does not suffice to verify the memory safety of these procedures, because
they are not guaranteed to be called with the inferred preconditions).

Illous, Lemerre, and Rival [ILR20] take another approach to modular analysis and represent function
summaries as abstract transformations rather than precondition–postcondition pairs. They introduce
novel logical connectors over abstract transformations, inspired by separation logic, which enable them
to devise a static analysis by abstract interpretation based on those connectors. In addition, to make
the analysis modular, they introduce an algorithm to compose abstract transformation, thus enabling
to analyze each function only once.

2.2.3 Other shape analysis techniques

Based on the work of Jonkers [Jon81] which characterizes data structures by their access paths and
the aliasing relations between them, Deutsch [Deu92; Deu94] proposes a storeless analysis by abstract
interpretation whose lattice consists of alias pairs of the form ((𝑝1, 𝑝2),K)where 𝑝1 and 𝑝2 are symbolic
access paths like X→(tl→)𝑖hd (for a linked list structure struct l { void *hd; struct l *tl; }), and
K is an element of a numerical abstract domain (such as intervals, linear equalities, etc.) accounting for
the free variables in 𝑝1 and 𝑝2 (like 𝑖 in our example). This way, Deutsch is able to express properties
such as “the elements of X and Y are pairwise aliased” or “the 𝑖-th element of Y is aliased with the 2𝑖+1-
th element of X”. This analysis has the potential to express precise properties even on dynamic and
unbounded data structures, although representing data structures by alias pairs may look unintuitive
compared to shape graphs [SRW99]. Existing applications of symbolic access paths are limited to type-
safe languages [Deu92] or type-safe C programs [Deu94].

Ghiya and Hendren [GH96] proposed a storeless abstraction that retains the shape of the region
pointed by every pointer variable, among a limited set of data structure “shapes”: tree, acyclic graph
or graph with cycles. This shape abstraction is propagated in combination with a record of may-alias
relations between pointer variables. Because the heap is not represented deeper than by attributing a
shape to variables, this analysis is very conservative in presence of destructive updates.

The Forester tool [Hab+12; Hol+13] also uses a graph-based representation of the heap, but repre-
sents possibly unbounded regions using tree automata. Indeed, such automata can faithfully abstract

16 CHAPTER 2. Related work on static analysis of memory

memory structures that are shaped like trees, i.e. regions that do not feature sharing. When sharing is
present, the heap is split in several sharing-free regions, with “cut points” to represent the links between
these regions. Such automata can be recursive —hence the name forest automata—, allowing to describe
structures such as lists of lists. While forest automata originally had to be provided by the analysis user,
[Hol+13] adds the possibility for the tool to infer them automatically.

Marron et al’s Unified Memory Analysis (UMA) [Mar+07] is a shape analysis for a subset of the Java
language. It represents the heap by a directed graph whose nodes represent sets of heap objects. It is
able to infer various properties, including connectivity between regions and the shape of regions, by
marking graph nodes with shape labels in a manner similar to Ghiya and Hendren [GH96] (they add
singly-linked lists to the set of possible shapes); having a richer heap abstraction allows them to deal
with destructive updates less conservatively. Their analysis uses both summarization and refinement
operations; the refinement does not introduce disjunctions, which avoids the scalability issues linked
to disjunctions in shape analysis. However, refining a memory region is only possible for some data
structures, and if there is exactly one incoming points-to edge into the region.

2.3 Type-based memory analyses

A third line of work, to which this thesis belongs, explores the possibility of leveraging type systems to
infer or verify memory properties.

A restriction of refinement types [FP91] called liquid types has been introduced in high-level lan-
guages such as Haskell. Rondon, Kawaguchi, and Jhala [RKJ10] have proposed methods to use liquid
types in low-level code as well. Using liquid types in function signatures is a way to specify function
contracts. They are mostly used to verify memory safety.

Rondon et al.’s analysis algorithm has focusing and unfocusing operations, which allows it to per-
form flow-sensitive, strong updates on a single type instance at a time. The insertion of “fold” and
“unfold” directives is conservative, which causes precision loss. This limitation is inherent to the fact
that their analysis is primarily designed as a type inference algorithm which cannot make the focusing
decision based on the inferred possible states of variables and memory.

Chandra et Reps’s physical types for C [CR99], like ours, describe the byte-level layout of types in
memory. For this reason, we reuse the name physical types for our type system (Chapter 4). Chandra and
Reps’s physical types support a restricted form of pointer arithmetic, namely expressions of the form
p + 1 where p is a pointer. Their analysis aims at verifying the correctness of programs manipulating
standard C types and consists in a type inference algorithm.

Diwan et al.’s type-based alias analysis [DMM98] is an alias analysis which works on type-safe
programs, implemented for Modula-3 programs. It consists in performing a Steensgaard-style points-
to analysis, but using types instead of allocation sites as abstraction of memory objects. In addition,
points-to sets are refined using subtyping relations: if S1 is a subtype of T, then an expression of type
T may refer to an object of S1, but the converse is not true.

Balatsouras and Smaragdakis [BS16] propose a structure-sensitive analysis for C and C++, which
adds type information to abstract memory objects (in addition to allocation site information) to increase
precision. Since type information is not always readily available—e.g. a call to malloc() returns a pointer
to an array of bytes, which is cast to the correct type at a later point—they record the cast instructions
these objects may flow to using a simpler points-to analysis. They show that distinguishing abstract
memory objects by type improves precision significantly, and is crucial in resolving virtual calls in the
case of C++.

Lattner [Lat05] proposed Data Structure Analysis (DSA), which takes as input LLVM code. It makes
use of LLVM’s type system to infer for each function a flow-insensitive points-to graph using a unification-
based algorithm. Unlike other analyses, DSA infers possible points-to relations between abstract objects,

2.3. Type-based memory analyses 17

including objects not directly pointed to by program variables. Connected instances of the same type
are collapsed together. As a consequence, it can e.g. verify that two linked lists are disjoint, but not that
they are acyclic. In addition, since it relies on LLVM’s typed access paths, it cannot handle arbitrary
pointer arithmetic. Despite being fully context-sensitive (each function call is analyzed in-context), it
remains scalable enough to analyze hundreds of thousands of lines of C in a matter of seconds. The data
structure graphs computed can be used to perform a pointer or alias analysis.

Finally, safer dialects of C have been proposed, such as Cyclone [Mor+02], CCured [Nec+05], or
CheckedC [Ell+18]. Compilers for these languages use the programmer’s annotations to check as many
memory accesses as possible using a type inference algorithm, and inserts runtime checks when that is
not possible. These tools focus on practicality and easy interfacing with unchecked code.

18 CHAPTER 2. Related work on static analysis of memory

Chapter3
Abstract interpretation framework

Outline of the current chapter

3.1 General mathematical notations 19
3.2 The While-memory language 20
3.3 Notion of abstraction 22

3.3.1 Operator abstraction . 24
3.3.2 Relational and non-relational numerical abstractions 24

3.4 Abstract semantics of While-memory 27
3.4.1 Abstract semantics of expressions . 27
3.4.2 Abstract semantics of simple statements 27
3.4.3 Conditionals and loops . 27

3.5 Soundness of the abstract semantics 32

In this chapter, we define While-memory, a simple Turing-complete language with memory reading
and writing. Then, after a brief reminder of the abstract interpretation results that we use, we lay out
the general definition scheme of an abstract domain and analysis on this language. The static analyses
defined throughout Part I take While-memory as input. In Chapter 7, we will detail how to port this
analysis to C code and binary executables.

3.1 General mathematical notations

Given two integers 𝑎, 𝑏 ∈ ℤ, we define the following integer interval notations:

[𝑎, 𝑏] means {𝑥 ∈ ℤ | 𝑎 ≤ 𝑥 ≤ 𝑏}
]𝑎, 𝑏] means {𝑥 ∈ ℤ | 𝑎 < 𝑥 ≤ 𝑏}
[𝑎, 𝑏[means {𝑥 ∈ ℤ | 𝑎 ≤ 𝑥 < 𝑏}
]𝑎, 𝑏[means {𝑥 ∈ ℤ | 𝑎 < 𝑥 < 𝑏}.

We let X → Y denote the set of total functions from X to Y, and X ⇀ Y the set of partial functions.
Given a partial function 𝑓 ∶ X ⇀ Y, we let dom(𝑓) denote the domain of 𝑓 and codom(𝑓) its codomain,

19

20 CHAPTER 3. Abstract interpretation framework

stmt ∶∶= 𝑥 ∶= expr (assignment, 𝑥 ∈ 𝕏)
| ∗ℓexpr ∶= expr (memory write of size ℓ ∈ ℕ)
| stmt; stmt (sequence)
| skip (no-op)
| while expr do stmt done (loop)
| if expr then stmt else stmt end (conditional)
| 𝑥 ∶= malloc(expr) (memory allocation, 𝑥 ∈ 𝕏)

expr ∶∶= 𝑐 (constant, 𝑐 ∈ 𝕍)
| 𝑥 (variable, 𝑥 ∈ 𝕏)
| expr ⋄ expr (binary op., ⋄ ∈ {+,−, ×, /,≤,<,=,≠,&, |,⋯})
| ∗ℓexpr (memory read of size ℓ ∈ ℕ)

Figure 3.1: Syntax of While-memory.

i.e., the subset of Y whose elements are the image of some element of X. We let [𝑥1 ↦ 𝑦1, 𝑥2 ↦
𝑦2, … , 𝑥𝑛 ↦ 𝑦𝑛] denote the function 𝑓 mapping 𝑥1 to 𝑦1, 𝑥2 to 𝑦2, etc. We denote as 𝑓 [𝑥 ← 𝑦] the
function 𝑓 ′ ∶ dom(𝑓) ∪ {𝑥} → codom(𝑓) ∪ {𝑦} the function mapping every 𝑧 ∈ dom(𝑓) ⧵ {𝑥} to 𝑓 (𝑧) and
𝑥 to 𝑦 . When that notation is not ambiguous, we shall also denote as 𝑓 [𝑥 ← ⊥] the restriction of 𝑓 to
dom(𝑓) ⧵ {𝑥}.

The set of all subsets of X, or powerset of X, is denoted 𝒫(X). A partially ordered set (or poset)
(𝒟,⊑) is a set 𝒟 together with a partial order ⊑, that is, a binary relation that is reflexive, transitive, and
antisymmetric. A lattice is a poset (𝒟,⊑) such that any two elements of 𝒟 have a least upper bound
and greatest lower bound. A complete lattice (𝒟,⊑) is a lattice such that any subset of 𝒟 has a least
upper bound and a greatest lower bound. In particular, for any set X, (𝒫(X),⊆) is a complete lattice.

If (𝒟,⊑) is a lattice and F ∶ 𝒟 → 𝒟, then a fixpoint of F is an element 𝑥 ∈ 𝒟 such that F(𝑥) = 𝑥 ; a
post-fixpoint of F is an element 𝑥 ∈ 𝒟 such that F(𝑥) ⊑ 𝑥 . We shall use the fact that the set of fixpoints
of a monotone function F over a lattice is itself a lattice. In particular, F has a least fixpoint, which we
denote lfp F.

3.2 The While-memory language

Throughout this thesis, we will define our analyses on a simple imperative language, While-memory,
whose syntax is given in Figure 3.1.

While-memory features basic assignments, usual arithmetic expressions, memory operations (al-
location, read, write) and standard control flow commands. Memory locations include a finite set of
variables 𝕏 and a finite set of addresses 𝔸 that can be computed using pointer arithmetic. The analysis
is parameterized by the choice of an application binary interface (or ABI) that fixes endianness, basic
types sizes and alignments. For the sake of readability, in what follows we assume a little-endian ABI.
Let 𝒲 denote the number of bytes in a machine word.

While-memory enables dynamic allocation via the 𝑥 ∶= malloc(𝑒) construct, where 𝑥 is a variable
name, and 𝑒 an expression evaluating to an integer size.

Since the two problems of dangling pointer use (use-after-free bugs) andmemory leaks are out of the
scope of this thesis, there is no “free” operator in the language. As a consequence, our static analyses
will be unable to detect such bugs, or to detect memory leaks; for instance, in C, the free standard
function will be treated as a no-op (see Section 7.1.1).

The values manipulated by While-memory are bit vectors of a certain size. We will represent them
as a pair consisting of that size (in bytes) and of an integer, corresponding to the interpretation of the

3.2. The While-memory language 21

bit vector as a non-negative integer in base 2:
Definition 3.1 (Bit vectors). The set of bit vectors is:

𝕍 def= {(ℓ, 𝑣) | ℓ ∈ ℕ, 𝑣 ∈ [0, 28ℓ − 1]}
For 𝑛 ≥ 0, we let 𝕍𝑛 denote the set of bit vectors of length 𝑛 bytes.

We extend binary operator notation on bit vectors of the same byte length, i.e., the notation (ℓ, 𝑣1) ⋄
(ℓ, 𝑣2) means (ℓ, 𝑣1 ⋄ 𝑣2). The fact that bit vectors have a definite length allows to define bit vector
concatenation very simply:

Definition 3.2 (Bitvector concatenation). The concatenation of any two bit vectors 𝑥 and 𝑦 is denoted
𝑥 ∶∶ 𝑦 and defined by:

(ℓ1, 𝑣1) ∶∶ (ℓ2, 𝑣2) = (ℓ1 + ℓ2, 𝑣1 + 28ℓ1𝑣2)
Definition 3.3 (Addresses, variable stores, heaps, states). Memory addresses are word-sized bit vectors:

𝔸 = 𝕍𝒲

We let variable stores (or simply stores) be maps from variable names to their contents:

Σ = 𝕏 → 𝕍

and heaps be partial functions from addresses to one-byte values:

ℍ = 𝔸 ⇀ 𝕍1

Program states, whose set is denoted 𝕊, pair a variable store and a heap:

𝕊 = Σ × ℍ.
Given that While-memory supports memory reads and writes of an arbitrary number of bytes, we
introduce shorthand notations for such multi-byte operations.

Definition 3.4 (Multi-cell memory read). Given a heap ℎ ∈ ℍ, 𝑎 ∈ 𝔸, and ℓ ∈ ℕ, we let ℎ[𝑎..𝑎 + ℓ] denote
the reading of a region of size ℓ at address 𝑎.

ℎ[𝑎..𝑎 + ℓ] = ℎ(𝑎) ∶∶ ℎ(𝑎 + 1) ∶∶ ⋯ ∶∶ ℎ(𝑎 + ℓ − 1)
Note that this definition comes from our assumption of a little-endian architecture.
In addition, we denote by σ[𝑥 ← 𝑣] the store σ with 𝑥 now mapped to 𝑣 , and by ℎ[𝑎..𝑎 + ℓ ← 𝑣] the

heap ℎ with values at addresses 𝑎 (included) to 𝑎 + ℓ (excluded) replaced with the bytes from 𝑣 . Finally,
dropping a range of mappings from a heap is noted ℎ[𝑎..𝑎 + ℓ ← ⊥].

The semantics of the language is given in Figures 3.2 and 3.3 as a denotational semantics. The
semantics of expressions ℰJ⋅K is defined as a partial function that takes a state and returns a value, or is
undefined in the case of a runtime error, i.e., a division by zero or a memory read at an invalid address.
Arithmetic operations are performed modulo 28𝒲.

The semantics of statements J⋅K, given a While-memory statement 𝑝 and a set of states S, computes
all non-error states reachable by executing 𝑝 from one of the states in S. Error states —e.g., due to a
division by zero or a write to an invalid heap address— are not included in this semantics.

The semantics of skip is the identity function, while the semantics of P1; P2 is the composition of
the semantics of P1 and P2.

22 CHAPTER 3. Abstract interpretation framework

ℰJ⋅K ∶ expr × 𝕊 ⇀ 𝕍
ℰJ𝑐K𝑠 = 𝑐

ℰJ𝑥K(σ, ℎ) = σ(𝑥)
ℰJ∗ℓ𝑒K(σ, ℎ) = ℎ[𝑎..𝑎 + ℓ] if 𝑎 = ℰJ𝑒K(σ, ℎ) and [𝑎, 𝑎 + ℓ[⊆ dom(ℎ)

ℰJ𝑒1/𝑒2K𝑠 = (ℓ, 𝑣1/𝑣2) if ℰJ𝑒1K𝑠 = (ℓ, 𝑣1) and ℰJ𝑒2K𝑠 = (ℓ, 𝑣2) with 𝑣2 ≠ 0
ℰJ𝑒1 ⋄ 𝑒2K𝑠 = (ℓ, 𝑣1 ⋄ 𝑣2) if ℰJ𝑒1K𝑠 = (ℓ, 𝑣1) and ℰJ𝑒2K𝑠 = (ℓ, 𝑣2)

Figure 3.2: Semantics of While-memory expressions.

The variable assignment 𝑥 ∶= 𝑒 evaluates 𝑒 and, if the evaluation completed without runtime errors,
updates the variable store with the resulting value.

The memory write ∗ℓ𝑒1 ∶= 𝑒2 evaluates 𝑒1 and, if it results in a valid heap address —i.e., a word-sized
value that is in the domain of ℎ—, stores the result of evaluating 𝑒2 at that address, if 𝑒2 evaluates to a
bit vector of size ℓ.

The memory allocation 𝑥 ∶= malloc(𝑒) makes a non-deterministic choice: either it assigns 𝑥 to 0,
or, if 𝑒 evaluates to a positive value ℓ, writes an indeterminate value to a region that was previously
unmapped in ℎ, and assigns to 𝑥 the base address of that region.

The semantics of the conditional if 𝑒 then P1 else P2 end contains the results of executing P1 when
𝑒 evaluates to a non-zero value, and P2 when it evaluates to zero. Its definition uses the operator 𝒞J𝑒K,
which filters out states in which the evaluation of 𝑒 is undefined or results in 0.

Finally, the semantics of loops while 𝑒 do P done is standard; first, it computes the tightest loop
invariant as the least fixpoint lfp F of the operator F(X) = S ∪ JPK(𝒞J𝑒KX) which corresponds to the
loop semantics, i.e., executing P on all states that pass the condition 𝑒. This least fixpoint exists because
(𝒫(𝕊),⊆) is a lattice and F is monotone. Then, the states are filtered by 𝒞J¬𝑒K to keep only the states
that can exit the loop by failing the loop condition 𝑒.

3.3 Notion of abstraction

The semantics JPK is not suitable for automated analysis as it is not computable.
Abstract interpretation [CC77] is a general framework to reason about program analyzers. In par-

ticular, it is often used as a formal blueprint for building sound, automated static analyzers. It consists
in defining an abstract semantics of the language which, unlike the concrete semantics, is computable,
and is an over-approximation of the concrete semantics, in a sense that we make precise below.

Definition 3.5 (Concretization, soundness, exactness). Let (ℂ,≤) and (𝔻,⊑) be two posets. A concretiza-
tion is a monotone function γ ∶ 𝔻 → ℂ. The object 𝕕 ∈ 𝔻 is said to be a sound abstraction of 𝑐 ∈ ℂ if
𝑐 ≤ γ(𝕕). It is an exact abstraction if 𝑐 = γ(𝕕).
ℂ is often called the concrete domain and 𝔻 the abstract domain.

Example 3.1. Let 𝕀 be the set of integer intervals whose elements are non-negative and representable
on 𝒲 bytes:

𝕀 = {[𝑎, 𝑏] | 𝑎 ∈ [0, 28𝒲 − 1], 𝑏 ∈ [0, 28𝒲 − 1], 𝑎 ≤ 𝑏} ∪ {∅}
Any set of integers S ∈ 𝒫([0, 28𝒲 − 1]) can be abstracted by an interval, the concretization being the
identity. For example, [1, 17] is a sound abstraction of {1, 3, 17}. In this setting, the concrete domain is
(𝒫([0, 28𝒲 − 1]),⊆) and the abstract domain is (𝕀,⊆).

3.3. Notion of abstraction 23

𝒞J ⋅ K ∶ expr × 𝒫(𝕊) → 𝒫(𝕊)
𝒞J𝑒KS = {𝑠 ∈ S | ℰJ𝑒K𝑠 = (ℓ, 𝑣), 𝑣 ≠ 0}

J ⋅ K ∶ stmt × 𝒫(𝕊) → 𝒫(𝕊)JskipKS = SJP1; P2KS = (JP2K ∘ JP1K)SJ𝑥 ∶= 𝑒KS = {(σ[𝑥 ← 𝑣], ℎ) | (σ, ℎ) ∈ S, 𝑣 = ℰJ𝑒K(σ, ℎ)}
J∗ℓ𝑒1 ∶= 𝑒2KS = {(σ, ℎ[𝑎..𝑎 + ℓ ← 𝑣]) | (σ, ℎ) ∈ S, ℰJ𝑒1K(σ, ℎ) = (𝒲, 𝑎),

ℰJ𝑒2K(σ, ℎ) = (ℓ, 𝑣) }

J𝑥 ∶= malloc(𝑒)KS = {(σ[𝑥 ← 𝑎], ℎ[𝑎..𝑎 + ℓ ← 𝑣]) | (σ, ℎ) ∈ S, ℰJ𝑒K(σ, ℎ) = (𝒲, ℓ),
ℓ > 0, [𝑎, 𝑎 + ℓ[∩ dom(ℎ) = ∅, 𝑣 ∈ 𝕍ℓ

}

∪ {(σ[𝑥 ← (𝒲, 0)], ℎ) | (σ, ℎ) ∈ S, ℰJ𝑒K(σ, ℎ) = (𝒲, ℓ),
ℓ > 0 }

Jif 𝑒 then P1 else P2 endKS = JP1K(𝒞J𝑒KS) ∪ JP2K(𝒞J¬𝑒KS)Jwhile 𝑒 do P doneKS = 𝒞J¬𝑒K(lfp F)
where F(X) def= S ∪ JPK(𝒞J𝑒KX)

Figure 3.3: Denotational semantics of While-memory statements.

Example 3.2. Intervals can themselves be abstracted by representing them as a pair of bounds, or by a
special element ⊥ to denote the empty interval. Consider the abstract domain:

�̂� = {(𝑎, 𝑏) | 𝑎 ∈ [0, 28𝒲 − 1], 𝑏 ∈ [0, 28𝒲 − 1], 𝑎 ≤ 𝑏} ∪ {⊥}
The concretization is defined by:

γI ∶ �̂� → 𝕀
γI((𝑎, 𝑏)) = {𝑥 ∈ ℤ | 𝑎 ≤ 𝑥 ≤ 𝑏}
γI(⊥) = ∅

And the partial order ⊑I is defined by the fact that (𝑎, 𝑏) ⊑I (𝑐, 𝑑) if and only if 𝑐 ≤ 𝑎 and 𝑏 ≤ 𝑑 , and
that ⊥ is the lower bound. Note that this abstraction of intervals is more amenable to efficient machine
representation and manipulation.

For the sake of readability, in what follows, wewill use interval notation [𝑎, 𝑏] to denote a pair of bounds,
and 𝕀 to mean �̂�.

Example 3.3. While-memory variable stores can be abstracted by mapping each variable to an interval,
using as abstract domain 𝕏 → 𝕀 with concretization:

γ ∶ (𝕏 → 𝕀) → 𝒫(Σ)
γ(σ̂) = {σ ∈ Σ | ∀𝑥 ∈ 𝕏, σ(𝑥) = (𝒲, 𝑣) ∧ 𝑣 ∈ γI(σ̂(𝑥))}

That is, possible bit vector values for σ(𝑥) are the 𝒲-sized bit vectors that contain a value in the interval
σ̂(𝑥). The partial order of the abstract domain is the pointwise extension of interval inclusion, denoted

24 CHAPTER 3. Abstract interpretation framework

⊑𝕏→𝕀 and defined as:
σ̂1 ⊑𝕏→𝕀 σ̂2 ⟺ ∀𝑥 ∈ 𝕏, σ̂1(𝑥) ⊑I σ̂2(𝑥)

A stronger form of correspondence between abstract and concrete domains may exist in the form of
Galois connections [CC77]. However, sometime no Galois connection exists between the abstract and
concrete domain, and the existence of amonotone concretization is sufficient to reason about abstraction
and soundness. In this thesis, we will not use this stronger framework, so that our abstractions remain
composable with abstract domains that do not enjoy a Galois connection, such as polyhedra [CH78].

3.3.1 Operator abstraction

Definition 3.6 (Operator abstraction). Let (𝔻,⊑) denote an abstract domain concretizing to the concrete
domain (ℂ,≤) through the concretization function γ, and let 𝑓 ∶ ℂ → ℂ be an operator on ℂ. 𝑔 ∶ 𝔻 →
𝔻 is a sound abstraction of 𝑓 if, for all abstract objects 𝕕 ∈ 𝔻, 𝑓 (γ(𝕕)) ≤ γ(𝑔(𝕕)).
Example 3.4. Consider the operator adding 1 to all integers of a set: 𝑓 = λX. {𝑥 + 1 | 𝑥 ∈ X}. Then
λ[𝑎, 𝑏].]−∞,+∞[is a sound abstraction of 𝑓 in the interval domain 𝕀. Another sound abstraction is
λ[𝑎, 𝑏]. [𝑎 + 1, 𝑏 + 1]. This abstraction is also exact.

Example 3.5. Consider the concrete operator J𝑥 ∶= 7K, corresponding to assigning the value 7 to the
variable 𝑥 . A sound abstraction of this operator in 𝕏 → 𝕀, which we will denote J𝑥 ∶= 7K♯ ∶ (𝕏 → 𝕀) →
(𝕏 → 𝕀), can be defined as: J𝑥 ∶= 7K♯σ̂ = σ̂[𝑥 ← [7, 7]]

To compute the abstract semantics of a program, one needs an abstraction of every operation that
can be performed in the concrete semantics. In the case of While-memory, this means an abstract
operator for variable assignment (denoted J𝑥 ∶= 𝑒K♯), another for heap writing J∗ℓ𝑒loc ∶= 𝑒K♯, and so on
for all base constructs of the While-memory syntax (see below Section 3.4).

3.3.2 Relational and non-relational numerical abstractions

𝕏 → 𝕀 is an example of what is commonly called a numerical abstract domain, as it abstracts a set of
numerical variables. Abstract domains of the form 𝕏 → 𝔻♯, where 𝔻♯ abstracts a single value, are
called non-relational abstractions. Such abstractions abstract each variable independently, and thus fail
to express relations between them.

Example 3.6. Consider this example fromMiné [Min17] where 𝑥 and 𝑦 start out as containing unknown
values between 0 and 10, before 𝑥 is assigned the minimum of 𝑥 and 𝑦 :

// Assumption: x ∈ [0, 10], y ∈ [0, 10]
if 𝑦 ≤ 𝑥 then 𝑥 ∶= 𝑦 else skip end;

It is clear that at the end of this program, the set of possible values for the (𝑥, 𝑦) variable pair is

{(𝑥, 𝑦) | 𝑥 ∈ [0, 10], 𝑦 ∈ [0, 10], 𝑥 ≤ 𝑦}
However, the most precise abstraction of this fact in 𝕏 → 𝕀 is:

{(𝑥, 𝑦) | 𝑥 ∈ [0, 10], 𝑦 ∈ [0, 10]}
This situation is represented in Figure 3.4.

3.3. Notion of abstraction 25

𝑥

𝑦
Possible (𝑥, 𝑦) pairs
Interval abstraction

Figure 3.4: Set of possible (𝑥, 𝑦) pairs and its approximation by a non-relational abstraction.

Example 3.7 (The zone abstract domain). Consider the abstract domain consisting in a conjunction of
formulas of the form 𝑥𝑖 − 𝑥𝑗 ≤ 𝑐 or ±𝑥𝑖 ≤ 𝑐, where 𝑥𝑖, 𝑥𝑗 ∈ 𝕏 and 𝑐 ∈ 𝕍 . This domain is called the
zone abstract domain [Min04], and contains an exact abstraction of the program property described in
Example 3.6, namely the formula:

𝑥 ≤ 𝑦 ∧ −𝑥 ≤ 0 ∧ 𝑥 ≤ 10 ∧ −𝑦 ≤ 0 ∧ 𝑦 ≤ 10
In an implementation context, such abstract elements will typically be represented by difference bound
matrices (DBMs).

The zone domain is an example of a relational abstract domain.
In a numerical domain concretizing to 𝒫(𝕏 → 𝕍), elements of 𝕏 are usually called the keys or

dimensions of the abstract domain. In the previous examples, the number of keys was finite and fixed.
However, when analyzing heap-manipulating programs, there is often a need for a varying number
of keys of the numerical domain, corresponding to a varying number of memory cells. This varying
number of keys can be represented by a varying number of symbolic variables, which play the role of
the keys of an independent numerical abstract domain. This is the mechanism used in shape abstract
domains [LCR10; CR13].

The abstractions that we will define will also involve a varying number of symbolic variables (Chap-
ters 4 to 6). To represent the use of numerical abstract domains with a varying number of keys, in the
rest of this thesis we will formalize numerical domains as concretizing to a set of valuations of the sym-
bolic variables, i.e., elements of 𝕍 ♯ → 𝕍 , where 𝕍 ♯ = {𝕧0, 𝕧1,…} is an infinite, countable set of symbolic
variables.

Definition 3.7 (Numerical abstract domain accounting for the symbolic variables). In the rest of the
thesis, we assume the existence of an abstract domain 𝔻num with concretization:

γnum ∶ 𝔻num → 𝒫(𝕍 ♯ → 𝕍)
𝔻num is a parameter of the analysis. It may be either relational or non-relational.

Note that we formalize 𝕍 ♯ as an infinite set to avoid placing an a priori limit on the expressible numerical
predicates; however, for the analysis to be computable, the abstract domains involved can only express
constraints over a finite subset of 𝕍 ♯.

Example 3.8. Consider the abstract domain associating a symbolic variable to each variable name: 𝔻♯ =
𝕏 → 𝕍 ♯. To account for the values of symbolic variables, it concretizes not only to concrete variable
stores, but also to the associated valuations:

γD ∶ 𝔻♯ → 𝒫(Σ × (𝕍 ♯ → 𝕍))
γD(σ♯) = {(σ,𝓋) | 𝓋 ∶ 𝕍 ♯ → 𝕍 , ∀𝑥 ∈ 𝕏, σ(𝑥) = 𝓋(σ♯(𝑥))}

26 CHAPTER 3. Abstract interpretation framework

𝑥 ∶= 𝑦;
𝑥 ∶= 𝑥 + 1

(a) A simple
While-memory
program

𝕧0𝑥
𝕧1𝑦

(b) Initial state

𝕧1𝑥
𝕧1𝑦

(c) State after 𝑥 ∶= 𝑦

𝕧2𝑥
𝕧1𝑦

𝕧2 = 𝕧1 + 1

(d) Final state

Figure 3.5: Example of abstraction of Σ using symbolic variables.

Then, 𝔻♯ can be used in combination with 𝔻num, by using pairs of 𝔻♯ ×𝔻num as an abstraction of states.
This is a standard construct called product abstraction [CC79]. A possible concretization function is:

γcomb(σ♯,𝓋♯) = {σ | (σ,𝓋) ∈ γD(σ♯) ∧ 𝓋 ∈ γnum(𝓋♯)}
Assuming that 𝕏 = {𝑥, 𝑦}, Figure 3.5b represents an example abstract state (σ♯,𝓋♯) such that σ♯(𝑥) =
𝕧0 and σ♯(𝑦) = 𝕧1 and 𝓋♯ represents the absence of any constraint on any symbolic variables of 𝕍 ♯.
Without attempting to define an entire abstract semantics for 𝔻♯, we show the effect of two simple
While-memory statements: the statement 𝑥 ∶= 𝑦 causes σ♯ to map 𝑥 and 𝑦 to the same symbolic
variable (Figure 3.5c); the statement 𝑥 ∶= 𝑥 + 1 first evaluates 𝑥 + 1, which allocates a fresh symbolic
variable 𝕧2 and creates a numerical abstract state 𝓋♯′ that represents the constraint 𝕧2 = 𝕧1+1, all other
symbolic variables being unconstrained. The newly constrained symbolic variable 𝕧2 is then assigned
to 𝑥 (Figure 3.5d) in a new abstract store σ♯′. The concretization of the final abstract state is:

γD(σ♯′) = {(σ,𝓋) | σ(𝑥) = 𝓋(𝕧1) ∧ σ(𝑦) = 𝓋(𝕧2) ∧ 𝓋(𝕧2) = 𝓋(𝕧1) + 1}
and

γcomb(σ♯′,𝓋♯′) = {σ ∈ Σ | σ(𝑥) = σ(𝑦) + 1}

Our abstractions will often require to perform requests on the numerical abstract domain, i.e., check
whether some numerical constraints hold. We introduce the following notation:

Definition 3.8 (Requests on the numerical abstract domain). Given a numerical abstract state𝓋♯ ∈ 𝔻num
and a quantifier-free formula 𝑝 with free variables in 𝕍 ♯, we denote:

𝓋♯ ⊨ 𝑝
the fact that the constraint 𝑝 holds in all valuations of γnum(𝓋♯).

Finally, we assume the ability to add a constraint to a valuation: 𝓋♯[𝑝] denotes the numerical abstract
state 𝓋♯ with the added constraint 𝑝.

Note that 𝓋♯ ⊨ 𝑝 entails that 𝑝 holds in all valuations 𝓋 ∈ γnum(𝓋♯). But, due to the over-approximating
nature of abstract interpretation, if 𝓋♯ ⊨ 𝑝 does not hold, nothing can be deduced about γnum(𝓋♯).

In addition, the nature of the numerical predicates represented by 𝔻num depends on the choice of
the numerical abstract domain. For example, the interval abstract domain 𝕍 ♯ → 𝕀 is unable to represent
inequalities between symbolic variables, such as 𝕧0 < 𝕧1. As a consequence, it is not the case that
𝓋♯[𝑝] ⊨ 𝑝 for all constraints 𝑝.

3.4. Abstract semantics of While-memory 27

3.4 Abstract semantics of While-memory

The abstract semantics depends on each abstract domain and is part of its definition; however, all of our
abstract semantics share a common structure and handle similarly the following language constructs,
namely skip, statements sequences, conditionals, and loops.

Therefore, in this section, we give the structure of the abstract semantics of While-memory in an
abstract domain 𝔻♯ with concretization γ ∶ 𝔻♯ → 𝒫(𝕊 × (𝕍 ♯ → 𝕍)). The elements of 𝔻♯ are called
abstract states. Figure 3.8, page 31 summarizes the main definitions.

3.4.1 Abstract semantics of expressions

The operator ℰJ𝑒K♯ ∶ 𝔻♯ → 𝕍D ×𝔻♯ evaluates the expression 𝑒 in a given abstract state. It returns a pair
consisting of two elements:

• What we call an abstract value, representing the evaluation result. Different abstract domains may
use different sets of abstract values. We let 𝕍D denote the set of abstract values for domain 𝔻♯. For
instance, the domain from Example 3.8 uses symbolic variables as abstract values, i.e., expression
evaluation results in a symbolic variable: 𝕍D = 𝕍 ♯. In addition, we assume the existence of a
value concretization function γVD ∶ (𝕍 ♯ → 𝕍) × 𝕍D → 𝕍 such that γVD(𝓋, 𝕧) is the value abstracted
by 𝕧 in the context of 𝓋.

• An new abstract state. Indeed, in our abstract domains, expression evaluation may modify the
abstract state; consider again the example of Figure 3.5: evaluating the expression 𝑥 + 1 returns
𝕧2 and a new abstract state expressing a numerical constraint on 𝕧2:

ℰJ𝑥 + 1K♯(σ♯,𝓋♯) = (𝕧2, (σ♯,𝓋♯[𝕧2 = 𝕧1 + 1]))

The definition of ℰJ⋅K♯ is part of the abstract domain definition.

3.4.2 Abstract semantics of simple statements

Given a While-memory program P, JPK♯ ∶ 𝔻♯ → 𝔻♯ denotes the abstract semantics of P in the abstract
domain 𝔻♯. It is defined by induction on the language syntax.

The abstract operator JskipK♯ is simply the identity, and JP1; P2K♯ is the composition of the effect ofJP1K♯ and JP2K♯, as is in the concrete semantics.
The abstract operators for variable assignment, memory writes and memory allocation depend on

the abstract domain and are part of its definition.

3.4.3 Conditionals and loops

The semantics of conditionals and loops are common to all abstract domains; but they depend on op-
erators that are part of the abstract domain definition, namely a guard function, as well as an abstract
inclusion, an abstract join and a widening.

Guards

The abstract state guardD(𝕧, 𝕤) represents the restriction of the states abstracted by 𝕤 to the states in
which the abstract value 𝕧 represents a non-zero value. It depends on the abstract domain and is part
of its definition.

The guard function should be sound in the following sense:

28 CHAPTER 3. Abstract interpretation framework

𝕤 = (σ♯,𝓋♯)
𝑥 𝕧0

𝑦 𝕧1

𝕧0 ≠ 0
𝕧1 > 5 ⊑comb,Φ

𝕤′ = (σ♯′,𝓋♯′)
𝑥 𝕧′

0

𝑦 𝕧′
1

𝕧′
0 ≠ 0

𝕧′
1 ≠ 0

Figure 3.6: Example of abstract inclusion involving symbolic variables.

Theorem 3.1 (Soundness of guardD). Given an abstract state 𝕤 ∈ 𝔻♯ and an abstract value 𝕧 ∈ 𝕍D:

∀(𝑠,𝓋) ∈ γ(guardD(𝕧, 𝕤)), γVD(𝓋, 𝕧) ≠ 0

Abstract inclusion

In an abstract domain (𝔸,⊑) that abstract the concrete domain (𝒫(ℂ),⊆), an abstract inclusion operator
is an abstraction of concrete set inclusion ⊆ (or more generally of the partial order of the concrete
domain).

Definition 3.9 (Soundness of an abstract inclusion). ⊑ is a sound abstract inclusion if, for all abstract
elements 𝕒1 and 𝕒2:

𝕒1 ⊑ 𝕒2 ⟹ γ(𝕒1) ⊆ γ(𝕒2)
However, in the case of an abstract domain like 𝔻♯ that concretizes to sets of (state, valuation) pairs,

the definition of a sound abstract inclusion is more involved, due to the fact that abstract states may
refer to distinct sets of symbolic variables.

Consider the inclusion between 𝕤 and 𝕤′, represented on Figure 3.6. It is clear that all concrete states
abstracted by 𝕤 are also abstracted by 𝕤′. However, this is not true of the valuations, since the set of
symbolic variables constrained in each case is different. But it is clear that 𝕧0 (resp. 𝕧1) and 𝕧′

0 (resp. 𝕧′
1)

play similar roles in their respective states. We formalize this relation by a renaming Φ ∶ 𝕍 ♯ → 𝕍 ♯ of
the symbolic variables.

In the rest of this thesis, wewill assume that the numeric domain 𝔻num provides an abstract inclusion
operator up to a renaming Φ:
Definition 3.10 (Abstract inclusion operator of 𝔻num). For all Φ ∶ 𝕍 ♯ → 𝕍 ♯, 𝔻num is assumed to
provide a computable relation ⊑num,Φ ⊆ 𝔻num × 𝔻num which is sound in the following sense: for all
𝓋♯1,𝓋♯2 ∈ 𝔻num:

𝓋♯1 ⊑num,Φ 𝓋♯2 ⟹ ∀𝓋 ∈ γnum(𝓋♯1), 𝓋 ∘ Φ ∈ γnum(𝓋♯2)
Each abstract domain 𝔻♯ that we will define will provide two things as part of its definition:

• A definition of a renaming from one state to another, as well as an algorithm to construct such a
renaming.

• An abstract inclusion up to a renaming Φ, denoted ⊑D,Φ, that is sound in the following sense:

Definition 3.11 (Soundness of ⊑D,Φ). Given 𝕤1, 𝕤2 ∈ 𝔻♯, if Φ is a renaming from 𝕤2 to 𝕤1 and 𝕤1 ⊑D,Φ 𝕤2
holds, then:

∀(𝑠,𝓋) ∈ γD(𝕤1), (𝑠, 𝓋 ∘ Φ) ∈ γD(𝕤2)
Note that the renaming is from the right-hand-side operand of the abstract inclusion to the left-hand-
side. In addition, a renaming is not required to be injective.

3.4. Abstract semantics of While-memory 29

𝕤 = (σ♯,𝓋♯)
𝑥 𝕧0

𝑦 𝕧1

𝕧0 ≠ 0
𝕧1 > 5 ⊔comb,Φ

𝕤′ = (σ♯′,𝓋♯′)
𝑥 𝕧′

0

𝑦 𝕧′
1

𝕧′
0 ∈ [3, 6]

𝕧′
1 ≠ 0 =

𝕤″ = (σ♯″,𝓋♯″)
𝑥 𝕧″

0

𝑦 𝕧″
1

𝕧″
0 ≠ 0

𝕧″
1 ≠ 0

Figure 3.7: Example of abstract join involving symbolic variables.

Example 3.9. If 𝔻♯ is the domain 𝕏 → 𝕍 ♯ from Example 3.8, then a renaming from the variables of σ♯2
to the variables of σ♯1 is any function Φ ∶ 𝕍 ♯ → 𝕍 ♯ such that:

∀𝑥 ∈ 𝕏, Φ(σ♯2(𝑥)) = Φ(σ♯1(𝑥))
Clearly, such a renaming can be constructed by iterating over the contents of σ♯1 and σ♯2. A possible
renaming from 𝕤′ to 𝕤, where 𝕤 and 𝕤′ are the abstract states depicted in Figure 3.6, is Φ such that
Φ(𝕧′

0) = 𝕧0, Φ(𝕧′
1) = 𝕧1 and is the identity everywhere else. Then σ♯ ⊑D,Φ σ♯′ holds. Note that this

abstract inclusion does not consider numerical constraints.
From there, we can define an abstract inclusion ⊑comb,Φ on 𝔻♯ × 𝔻num by:

(σ♯,𝓋♯) ⊑comb,Φ (σ♯′,𝓋♯′) ⟺ σ♯ ⊑D,Φ σ♯′ ∧ 𝓋♯ ⊑num,Φ 𝓋♯′

This abstract inclusion is sound in the usual sense: if Φ is a renaming from the variables of 𝕤2 to the
variables of 𝕤1, then:

𝕤1 ⊑comb,Φ 𝕤2 ⟹ ∀σ ∈ γcomb(𝕤1), σ ∈ γcomb(𝕤2)
We allow ourselves to omit the subscript Φ when unnecessary:

Notation 3.1 (Abstract inclusion operator). Given 𝕤1, 𝕤2 ∈ 𝔻♯, we write 𝕤1 ⊑D 𝕤2 if and only if there
exists a valid renaming Φ from 𝕤2 to 𝕤1 such that 𝕤1 ⊑D,Φ 𝕤2.

Abstract join

In any abstract domain (𝔸,⊑) that abstracts the concrete domain (𝒫(ℂ),⊆), a join operator is an ab-
straction of set union ∪ (or more generally of the greatest lower bound of the concrete domain, which
is always assumed to have a lattice structure).

Definition 3.12 (Soundness of an abstract join). ⊔ is a sound join operator if, for all abstract elements
𝕒1 and 𝕒2:

γ(𝕒1) ∪ γ(𝕒2) ⊆ γ(𝕒1 ⊔ 𝕒2)
However, like with abstract inclusion, in our framework the definition of a sound abstract join is more
involved. Consider the problem of joining the two states 𝕤 and 𝕤′ in Figure 3.7. The result is a similar
state containing fresh symbolic variables. The constraints on these variables are the disjunction of the
constraints on their counterparts in the operands.

To make this notion of “counterpart” precise, we introduce two-way variable renamings, which con-
sist in sets of tuples of variables:

Example 3.10. In the domain 𝔻♯ from Example 3.8, a two-way renaming between states σ♯ and σ♯′ is a
set Ψ ⊆ (𝕍 ♯)3 such that for all 𝑥 ∈ 𝕏, there exists a unique 𝕧″ ∈ 𝕍 ♯ such that (σ♯(𝑥),σ♯′(𝑥), 𝕧″) ∈ Ψ
and 𝕧″ is fresh (i.e. does not appear in one of the input states) and does not appear elsewhere in Ψ. In
Figure 3.7, a possible two-way renaming is Ψ = {(𝕧0, 𝕧′

0, 𝕧″
0), (𝕧1, 𝕧′

1, 𝕧″
1)}.

30 CHAPTER 3. Abstract interpretation framework

Each abstract domain that we will define will provide:

• A definition of valid two-way renamings between two abstract states, as well as a method to
construct them.

• An abstract join up to a renaming ⊔D,Ψ, which is sound in the following sense:

Definition 3.13 (Soundness of an abstract join up to a renaming). Given 𝕤1, 𝕤2 ∈ 𝔻♯, if Ψ is a valid
two-way renaming between 𝕤1 and 𝕤2 then:

∀(𝑠,𝓋) ∈ γD(𝕤𝑖), (𝑠, 𝓋 ∘ Φ𝑖) ∈ γD(𝕤1 ⊔D,Ψ 𝕤2) for 𝑖 ∈ {1, 2}
where Φ1 and Φ2 are defined by

(Φ1(𝕧″),Φ2(𝕧″)) = (𝕧, 𝕧′) ⟺ (𝕧, 𝕧′, 𝕧″) ∈ Ψ
In addition, we assume that 𝔻num provides a sound abstract join up to a renaming:

Definition 3.14 (Abstract join in 𝔻num). We assume the existence of an operator ⊔num,Ψ ∶ 𝔻num ×
𝔻num → 𝔻num, which is sound in the following sense: for all 𝓋♯1,𝓋♯2 ∈ 𝔻num, for all Ψ ∈ 𝒫((𝕍 ♯)3), if
𝓋♯3 = 𝓋♯1 ⊔num,Ψ 𝓋♯2, then:

∀𝓋1 ∈ γnum(𝓋♯1), 𝓋1 ∘ Φ1 ∈ γnum(𝓋♯3)
∀𝓋2 ∈ γnum(𝓋♯2), 𝓋2 ∘ Φ2 ∈ γnum(𝓋♯3)

where
(Φ1(𝕧″),Φ2(𝕧″)) = (𝕧, 𝕧′) ⟺ (𝕧, 𝕧′, 𝕧″) ∈ Ψ

As with abstract inclusion, we allow ourselves to omit the subscript Ψ when a valid renaming is known
to exist:

Notation 3.2 (Abstract join operator). Given 𝕤1, 𝕤2 ∈ 𝔻♯, we write 𝕤1 ⊔D 𝕤2 to mean 𝕤1 ⊔D,Φ 𝕤2, where Ψ
is any two-way renaming between 𝕤1 and 𝕤2.

Semantics of conditionals

In the abstract operator Jif 𝑒 then P1 else P2 endK♯, the semantics of each branch of the conditional are
computed after applying the guard function. The results of evaluating the two branches are then joined
using ⊔D.

Semantics of loops

The abstract semantics of a loop Jwhile 𝑒 do P doneK♯ shares many similarities with its concrete seman-
tics. However, rather than a least fixpoint, it is computed as a post-fixpoint using the lim operator:

Definition 3.15 (Post-fixpoint operator). For any poset (𝔻♯,⊑) containing a smallest element ⊥, and for
any monotone operator F ∶ 𝔻♯ → 𝔻♯:

lim F = Fδ(⊥)
where δ is the smallest integer such that Fδ(⊥) ⊑ Fδ+1(⊥), if it exists.
If 𝔻♯ has infinite increasing chains, lim F may not be defined or, more practically, may take a long time
to compute. To alleviate this, it is standard in abstract interpretation to mandate the existence of a
widening operator. A widening operator is similar to a join operator, with the additional property that
repeated applications of it should not result in infinitely increasing chains.

3.4. Abstract semantics of While-memory 31

ℰJ⋅K♯ ∶ expr × 𝔻♯ → 𝕍D × 𝔻♯

provided by the domain

guardD ∶ 𝕍D × 𝔻♯ → 𝔻♯ provided by the domain

⊑D ⊆ 𝔻♯ × 𝔻♯ provided by the domain

⊔D ∶ 𝔻♯ × 𝔻♯ → 𝔻♯ provided by the domain

∇D ∶ 𝔻♯ × 𝔻♯ → 𝔻♯ provided by the domain

J⋅K♯ ∶ stmt × 𝔻♯ → 𝔻♯

JskipK♯𝕤 = 𝕤JP1; P2K♯𝕤 = JP2K♯(JP1K♯𝕤)
J𝑥 ∶= 𝑒K♯𝕤 provided by the domainJ𝑥 ∶= malloc𝑡 (𝑒size)K♯𝕤 provided by the domainJ∗ℓ𝑒loc ∶= 𝑒K♯𝕤 provided by the domainJif 𝑒 then P1 else P2 endK♯𝕤 = JP1K♯(guardD(𝕧true, 𝕤true)) ⊔D JP2K♯(guardD(𝕧false, 𝕤false))

where {(𝕧true, 𝕤true) = ℰJ𝑒K♯𝕤
(𝕧false, 𝕤false) = ℰJ¬𝑒K♯𝕤Jwhile 𝑒 do P doneK♯𝕤 = guardD(ℰJ¬𝑒K♯(lim F))

where F(X) def= X ∇D (𝕤 ⊔D JPK♯(guardD(ℰJ𝑒K♯X)))

Figure 3.8: Abstract semantics of While-memory programs

Definition 3.16 (Widening). An operator ∇∶ 𝔻♯ × 𝔻♯ → 𝔻♯ is a widening operator in the abstract
domain (𝔻♯,⊑), if:

1. it computes upper bounds: ∀𝑥, 𝑦 ∈ 𝔻♯, 𝑥 ⊑ 𝑥 ∇ 𝑦 and 𝑦 ⊑ 𝑥 ∇ 𝑦

2. it enforces convergence: for any sequence (𝑥𝑖)𝑖∈ℕ in 𝔻♯, the sequence (𝑦𝑖)𝑖∈ℕ defined by:

{𝑦0 = 𝑥0
𝑦𝑖+1 = 𝑦𝑖 ∇ 𝑥𝑖+1

stabilizes in finite time: ∃N ∈ ℕ, 𝑦N+1 ⊑ 𝑦N.

We assume that each domain, in addition to the abstract join ⊔D,Ψ, provides a widening ∇D,Ψ that fulfills
the conditions above. Like with the abstract join, we write ∇D when the renaming can be left implicit.

32 CHAPTER 3. Abstract interpretation framework

𝔻♯ 𝔻♯

𝒫(𝕊 × (𝕍 ♯ → 𝕍)) 𝒫(𝕊 × (𝕍 ♯ → 𝕍))

𝒫(𝕊) 𝒫(𝕊)

JPK♯
γ

erase_val

γ

erase_val

JPK
Figure 3.9: Graphical representation of semantics and concretizations for our generic abstract domain.

3.5 Soundness of the abstract semantics

The abstract semantics should be sound with respect to the concrete semantics, meaning that its con-
cretization should contain all program executions of the concrete semantics.

To formalize this, since 𝔻♯ concretizes to elements of 𝒫(𝕊 × (𝕍 ♯ → 𝕍)), we define an operator
erase_val that strips away the valuation component, which is not present in the concrete semantics.

Definition 3.17 (Valuation erasure operator). The function erase_val ∶ 𝒫(𝕊 × (𝕍 ♯ → 𝕍)) → 𝒫(𝕊) is
defined as:

erase_val(X) = {𝑠 | (𝑠,𝓋) ∈ X}
Definition 3.18 (Soundness of the abstract semantics). If we let γ′ ∶ 𝔻♯ → 𝒫(𝕊) denote the concretiza-
tion that ignores the valuation component:

γ′ = erase_val ∘ γ

Then J⋅K♯ is sound with respect to J⋅K if and only if, for every program P ∈ stmt:

∀𝕕 ∈ 𝔻♯, (JPK ∘ γ′)(𝕕) ⊆ (γ′ ∘ JPK♯)(𝕕)
Soundness proofs typically proceed by induction on the syntax of While-memory. For each abstract

domain that we introduce, we will justify the soundness of its abstract semantics.

Chapter4
Physical types

Outline of the current chapter

4.1 Overview example and informal presentation 33
4.2 Definitions 36

4.2.1 Labellings . 38
4.2.2 Subtyping between address types . 38
4.2.3 Types as sets of values . 40

4.3 Typed semantics 42
4.3.1 Typed semantics of expressions . 42
4.3.2 Typed semantics of statements . 43

4.4 Extending the type system: directions and pitfalls 45
4.4.1 Invalid address subtyping rules . 46
4.4.2 Possible extensions . 47

In this chapter, we introduce physical types, which constitute the foundation of our memory analy-
sis. In Section 4.1, we informally introduce physical types on an example. In Section 4.2, we define
physical types and give them meaning in terms of the heap structural properties that they allow to ex-
press. We also prove some results that we will use in the next chapters to establish the soundness of
our analysis. We then give a typed semantics of the While-memory language (Section 4.3), which will
be over-approximated by type-based shape abstract domain in Chapter 5. Finally, we discuss possible
extensions of physical types (Section 4.4).

4.1 Overview example and informal presentation

Throughout Chapters 4 to 6, we demonstrate the main features of our analysis on a running example.
This example is a low-level implementation of a classical union-find structure. Union-find algorithms
allow to efficiently represent and update the partition of a set of “nodes” into equivalence classes, by
providing a fast operation to merge two equivalence classes. The representation combines the union-
find structure based on chains of pointers to class representatives in reverse tree shapes, with circular,
doubly-linked lists for efficient iteration over the elements of an equivalence class, and was inspired

33

34 CHAPTER 4. Physical types

1 typedef struct uf {
2 struct uf* parent;
3 } uf;
4

5 typedef struct dll {
6 struct dll *prev; /* != null. */
7 struct dll *next; /* != null. */
8 } dll;
9

10 typedef unsigned int node_kind;
11 typedef struct node {
12 node_kind kind; /* kind <= 5. */
13 dll dll;
14 uf uf;
15 } node;
16

17 uf *uf_find(uf *x) {
18 while(x->parent != 0) {
19 uf *parent = x->parent;
20 if(parent->parent == 0)
21 return parent;
22 x->parent = parent->parent;
23 x = parent->parent;
24 }
25 return x;
26 }

24 void dll_union(dll *x, dll *y) {
25 y->prev->next = x->next;
26 x->next->prev = y->prev;
27 x->next = y; y->prev = x;
28 }
29

30 void uf_union(uf *x, uf *y) {
31 uf *rootx = uf_find(x);
32 uf *rooty = uf_find(y);
33 if(rootx != rooty)
34 rootx->parent = rooty;
35 }
36

37 void merge(node *x, node *y) {
38 dll_union(&x->dll, &y->dll);
39 uf_union(&x->uf, &y->uf);
40 }
41

42 node *make(node_kind kind) {
43 node *n = malloc(sizeof(node));
44 n->kind = kind;
45 n->dll.next = &n->dll;
46 n->dll.prev = &n->dll;
47 n->uf.parent = NULL;
48 return n;
49 }

Figure 4.1: An algorithm for union-find and listing elements in a partition.

4.1. Overview example and informal presentation 35

0 1 2

0x0

0x20∶ 0x60∶ 0x80∶

(a) Concrete state.

ℳ ∶ node_kind ↦ {𝑥 ∶ word4 | 𝑥 ≤ 5}
uf ↦ uf.(0)∗
dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}
node ↦ node_kind × dll × uf

(b) Physical types.

∀𝓋, ∀(σ, ℎ,ℒ, Γ) well-typed state, ∀𝑣 value ∶
𝑣 ∈ ⦇ node.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ 𝑣 + 4 ∈ ⦇ node.(4) ⦈ℒ,𝓋 ∧ 𝑣 + 4 ≠ 0 (1)

⦇ node.(4)∗ ⦈ℒ,𝓋 ⊆ ⦇ dll.(0)∗ ⦈ℒ,𝓋 (2)
𝑣 ∈ ⦇ dll.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ ℎ[𝑣..𝑣 + 4] ∈ ⦇ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} ⦈ℒ,𝓋 (3)

⦇ uf.(0)∗ ⦈ℒ,𝓋 ∩ ⦇ dll.(0)∗ ⦈ℒ,𝓋 = {0} (4)
(c) Some structural invariants entailed by ℳ

Figure 4.2: Concrete state, physical types and example structural invariants.

by Kennedy [Ken07]. The whole code is presented in Figure 4.1. It is written in C and not in While-
memory for the sake of readability; the correspondence between C and While-memory is covered in
detail in Chapter 7, but this simple code can be trivially translated to While-memory by assuming that
𝕏 is large enough to uniquely identify the local variables in each function, by translating field accesses
to the corresponding pointer arithmetic (e.g. x->next becomes ∗4𝑥 + 4), and by inlining function calls.
We assume a little-endian architecture with 4-bytes words.

Structures uf and dll respectively represent the union find and doubly linked list structures. Fol-
lowing a pattern common in low-level and system code [Bro09], the structure node comprises both
sub-structures uf and dll. Function uf_find returns the representative of the class of an element and
halves [TvL84] the paths to the root to speed up subsequent calls. Functions dll_union and uf_union
respectively merge doubly linked-lists and union-finds. Last, function merge reunites the equivalence
classes of two nodes, and make creates a new node.

Figure 4.2a displays an example concrete state, with a class made of three nodes (and where the node
at address 0x60 is the representative). Such states contain a very high degree of sharing due to the inter-
leaved union-find and doubly-linked list structures. Moreover, this data representation is unbounded:
for example, the number of objects of type uf traversed upon a call to uf_find can be arbitrarily large.
Therefore, pointer analyses (which do not attempt to infer properties of heap objects that are not di-
rectly pointed to by program variables) require tricky and ad hoc adaptations regarding sensitivity to
be precise, so as to divide heaps in regions of pointers with similar properties; these techniques are too
imprecise to verify type or memory safety for C or assembly.

At the same time, shared data structures such as union-find are notoriously hard to handle for shape
analysis abstractions, because they exhibit unstructured sharing, i.e. sharing that cannot be described
in a local manner (not even inductively), and we are not aware of any successful shape analysis based
verification for a structure similar to that of Figure 4.1.

One of our key contributions is to propose an abstract interpretation framework based on a semantic
interpretation of physical types, that simultaneously verifies the preservation of type-based structural
invariants, and uses these invariants to perform and improve the precision of the analysis. This contrasts
with the usual method where syntactic type checking and type-based pointer analyses are separate
analyses, each insufficiently precise to verify type safety for low-level languages like C or binary. The
type-based structural invariant implies dividing the heap into partitions, to which are attached flow-
insensitive information, allowing for efficient static analysis operations. To further improve precision,
our analysis is strengthened by flow-sensitive points-to predicates (Chapter 6).

36 CHAPTER 4. Physical types

𝕋 ∋ 𝑡 ∶∶= word𝑛 (base type of size 𝑛 bytes)
| n (type name, n ∈ 𝒩)
| 𝑡𝑎∗ (pointer type)
| 𝑡 × 𝑡 (product type)
| {𝑥 ∶ 𝑡 | pred(𝑥)} (type refined with predicate)
| 𝑡[𝑠] (array type of size 𝑠 ∈ ℕ)

𝕋A ∋ 𝑡𝑎 ∶∶= t.(𝑘) (address type with offset, 𝑘 ∈ ℕ)

pred(𝑥) ∶∶= predexpr(𝑥) ⋈ predexpr(𝑥) (comparison, ⋈ ∈ {≤,<,=,≠})
| 𝑏 (boolean constant, 𝑏 ∈ 𝔹)
| ¬ pred(𝑥) (negation)
| pred(𝑥) ∧ pred(𝑥) (conjunction)

predexpr(𝑥) ∶∶= 𝑥 (unknown of the predicate)
| 𝑐 (numeric constant, 𝑐 ∈ 𝕍)
| 𝕧 (symbolic variable, 𝕧 ∈ 𝕍 ♯)
| predexpr(𝑥) ⋄ predexpr(𝑥) (binary op., ⋄ ∈ {+,−, ×,&, |,⋯})

Figure 4.3: Grammar of physical types.

Let us examine the types and structural invariants of our example code. The types are given in
Figure 4.2b. They derive in part from the C types, as these types contain a lot of information about
the layout of the data-structures, at least when programs preserve types (which the C semantics does
not guarantee). Intuitively, uf.(0)∗ denotes a pointer to the base address of a well-formed uf instance.
This pointer is allowed to be null. In the case of dll, on the contrary, pointer types are refined with a
predicate stating that the pointers should not be null, giving lieu to the type {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}. Type
node_kind is a generic 4-bytes integer, word4, refined with a predicate restraining its possible values.
Finally, these types can be assembled via the product sign × to form composite types, akin to C structs.
Thus, these types can be more precise than C types, although C types can be translated to our type
language. But they are less precise than shape invariants, as they cannot represent the relation between
different elements of a same type: for example, our dll type would accept not only doubly-linked lists,
but also a binary tree with leaves pointing to the root.

These types entail structural invariants, some of which are presented in Figure 4.2c, that a well-
typed state must fulfill. These invariants relate types, interpreted as sets of values: ⦇ 𝑡 ⦈ℒ,ν represents
the set of values for type 𝑡 . Equation (1) relates adjacent addresses; Equation (2) describes a subtyping
relationship; Equation (3) relates the type of an address with its contents; and Equation (4) describes a
partitioning of the heap in distinct regions. We will now proceed to formally defining these structural
invariants.

4.2 Definitions

Physical types describe the low-level memory representation of values, down to the byte level, as well
as the points-to relations between values. Their grammar is defined in Figure 4.3. In addition to the
base scalar types word𝑛 , there are pointer types, product types, refinement types and arrays.

Types can be given names —from a finite set of names 𝒩— via a mapping ℳ ∶ 𝒩 → 𝕋 from
type names to types. This mapping is fixed during the execution of a program. In what follows, we

4.2. Definitions 37

will always denote types in italic font such as 𝑡1, while type names will be written in typewriter font:
n1. Type names have two uses: first, they break cycles in the definition of recursive types; second,
they distinguish types otherwise structurally equal (i.e. they allow the type system to be nominal), and
in particular pointers to two structurally equal types with different names will not alias. We shall only
consider “well-founded” recursive types, in which recursion cycles can only be created through pointers,
as is the case in C types. More precisely:

Definition 4.1 (Physical types). The set of physical types is 𝕋 , defined by induction in Figure 4.3. Let
ℳ ∶ 𝒩 → 𝕋 be a mapping from type names to types. Let emb ∶ 𝕋 → 𝒫(𝕋) be a function that computes
the types “embedded” in another type, defined by:

emb(word𝑛) = {word𝑛}
emb(n) = {n}

emb(𝑡.(𝑘)∗) = ∅
emb({𝑥 ∶ 𝑡 | 𝑝(𝑥)}) = emb(𝑡)

emb(𝑡1 × 𝑡2) = emb(𝑡1) ∪ emb(𝑡2)
emb(𝑡[𝑠]) = emb(𝑡)

Let 𝒢ℳ be the smallest directed graph that contains, for every mapping n ↦ 𝑡 in ℳ, a node labelled n
and for each element 𝑢 ∈ emb(𝑡), a node labelled 𝑢 and an edge from n to 𝑢. ℳ is said well-formed if
𝒢ℳ is acyclic.

For instance, if there is a type circ defined by ℳ(circ) = word4 × circ, the set of type definitions
is not valid: a type should not contain itself. We will only consider well-formed type mappings. As
a consequence, we will be able to write definitions and proofs by induction on the grammar of types.
In the inductions that follow, unless otherwise stated, the strictly decreasing measure ensuring well-
foundedness will be the height of a type in its connected component in 𝒢ℳ.

The address type 𝑡 .(𝑘) ∈ 𝕋A represents the k-th byte in a value of type 𝑡 . A pointer type such as 𝑡 .(𝑘)∗
should be interpreted as either: the address of the 𝑘-th byte of a value of type 𝑡 , or the value 0. Types
can be refined with a predicate. Note that a type refined by a predicate makes use of a local variable
𝑥 that denotes the value of this type and is meant to be constrained in the matching pred(𝑥) predicate,
which is why grammar entries predexpr(𝑥) and pred(𝑥) take a variable as parameter. Predicates are
quantifier-free, unary predicates with numeric and logical operators. They may refer to symbolic vari-
ables, which are existentially quantified variables, i.e., these variables represent fixed, constant values.
For convenience, we use the set of symbolic variables 𝕍 ♯ defined in Chapter 3.

The product type 𝑡1 × 𝑡2 represents values consisting of a value of type 𝑡1 and a value of type 𝑡2 as
they appear side by side in memory, e.g. in a C struct. Similarly, array types of the form 𝑡[𝑛] represent
contiguous sequences of 𝑛 values of type 𝑡 .

Each type has a size (in bytes) given by the function size ∶ 𝕋 → ℕ.

size(word𝑛) = 𝑛
size(n) = size(ℳ(n))

size(𝑡𝑎∗) = 𝒲
size({𝑥 ∶ 𝑡 | 𝑝(𝑥)}) = size(𝑡)

size(𝑡1 × 𝑡2) = size(𝑡1) + size(𝑡2)
size(𝑡[𝑠]) = 𝑠 ⋅ size(𝑡)

C compilers sometimes introduce padding bytes in structs to align their sizes on a multiple of 4 or

38 CHAPTER 4. Physical types

8. Since product types express the low-level representation of values in memory, they should translate
these padding bytes explicitly, e.g. struct { t a; u b; }; would be translated as 𝑡 × word2 × 𝑢 if there
are two padding bytes between the fields.

4.2.1 Labellings

The typed semantics will attribute types to variables, but also to memory regions. We formalize this as
a mapping from memory addresses to address types, which we call a labelling.

Definition 4.2 (Labelling). A labelling ℒ is a function of 𝔸 → 𝕋A such that each tagging of a region
with a type is whole and contiguous, i.e. for all types 𝑡 ∈ 𝕋 , for all address 𝑎 ∈ 𝔸, if we define 𝑛 = size(𝑡),
then for all 𝑘 ∈ [0, 𝑛 − 1],

ℒ(𝑎 + 𝑘) = 𝑡.(𝑘) ⟹
⎧⎪
⎨⎪⎩

ℒ(𝑎) = 𝑡.(0)
ℒ(𝑎 + 1) = 𝑡.(1)
⋮
ℒ(𝑎 + 𝑛 − 1) = 𝑡.(𝑛 − 1)

The set of labellings is denoted 𝕃.

Example 4.1. Data structures in Figure 4.2a can be labelled like so:

ℒ ∶ 0x20 ↦ node.(0) 0x21 ↦ node.(1) … 0x2c ↦ node.(15)
0x60 ↦ node.(0) 0x61 ↦ node.(1) … 0x6c ↦ node.(15)
0x80 ↦ node.(0) 0x81 ↦ node.(1) … 0x8c ↦ node.(15)

4.2.2 Subtyping between address types

Several address types may make sense for a single memory cell, but some are more precise than others:

Example 4.2. In the labelling of Example 4.1, the type of address 0x24 is node.(4). But in some sense,
it is also a dll.(0), because node contains a dll at offset 4. The former is more precise, however: all
memory cells that contain a node.(4) contain a dll.(0), but the converse is not true. We say that node.(4)
is a subtype of dll.(0). Intuitively, “𝑡 .(𝑛) is a subtype of 𝑢.(𝑚)” means that 𝑡 “contains” a 𝑢 somewhere in
its structure.

Definition 4.3 (Weakening function 𝑤). The function 𝑤 ∶ 𝕋A ⇀ 𝕋A is defined inductively by:

𝑤(n.(𝑘)) = 𝑡.(𝑘) if 0 ≤ 𝑘 < size(𝑡), where 𝑡 = ℳ(n)
𝑤((𝑡1 × 𝑡2).(𝑘)) = 𝑡1.(𝑘) if 0 ≤ 𝑘 < size(𝑡1)

𝑤((𝑡1 × 𝑡2).(size(𝑡1) + 𝑘)) = 𝑡2.(𝑘) if 0 ≤ 𝑘 < size(𝑡2)
𝑤(𝑡[𝑠].(𝑞 ⋅ size(𝑡) + 𝑘)) = 𝑡.(𝑘) if 0 ≤ 𝑞 < 𝑠 and 0 ≤ 𝑘 < size(𝑡)

Since all the cases above are disjoint, this constitutes a valid definition of the partial function 𝑤 , in the
sense that every type of 𝕋A has at most one image.

Definition 4.4 (Weakening of an address type). Given 𝑡 .(𝑖), 𝑢.(𝑗) ∈ 𝕋A, we say that 𝑡 .(𝑖) is the weakening
of 𝑢.(𝑗) if and only if 𝑡 .(𝑖) = 𝑤(𝑢.(𝑗)).

4.2. Definitions 39

Definition 4.5 (Subtyping between address types). Let the relation⪯ ⊆ 𝕋A×𝕋A be the transitive, reflexive
closure of the relation {(τ, υ) | υ = 𝑤(τ)}.

Recall that ℳ ∶ 𝒩 → 𝕋 maps type names to types, and is fixed for a given program. The choice
of ℳ influences the analysis. For instance, dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} and
dll ↦ dll.(0)∗ × dll.(0)∗ may both be sensible choices to translate the C structure dll, but the former
places stronger constraints on the inferred heap.

Let us now prove a useful property of the subtyping relation, namely, the fact that its graph is a
forest.

Lemma 4.1. For all address types τ, υ,ϕ ∈ 𝕋A,

ϕ ⪯ τ ∧ ϕ ⪯ υ ⟹ τ ⪯ υ ∨ υ ⪯ τ
Proof. Let us assume that ϕ ⪯ τ and ϕ ⪯ υ. Then there exists two finite chains ϕ ⪯ τ1 ⪯ τ2 ⪯ ⋯ ⪯ τ𝑛 ⪯ τ,
and ϕ ⪯ υ1 ⪯ υ2 ⪯ ⋯ ⪯ υ𝑚 ⪯ υ in which each element is the weakening of the previous one. Either one
chain is included in the other, or not. If yes, then either τ ⪯ υ or υ ⪯ τ, which ends the proof. If not,
then let 𝑝 be the minimal index such that τ𝑝 ≠ υ𝑝 . But τ𝑝 = 𝑤(τ𝑝−1) and υ𝑝 = 𝑤(τ𝑝−1), so τ𝑝−1 = υ𝑝−1,
which contradicts the minimality of 𝑝.
Definition 4.6 (Containment between types). For all types 𝑡, 𝑢 ∈ 𝕋 , it is said that 𝑡 contains 𝑢 if:

∃𝑖 ∈ [0, size(𝑡)[, ∀𝑘 ∈ [0, size(𝑢)[, 𝑡 .(𝑖 + 𝑘) ⪯ 𝑢.(𝑘)
Lemma 4.2. Given two types 𝑡, 𝑢 ∈ 𝕋 , suppose that an address type in 𝑢 is the weakening of an address
type in 𝑡 , i.e. suppose that there exist 𝑖 ∈ [0, size(𝑡)[and 𝑗 ∈ [0, size(𝑢)[, such that 𝑢.(𝑗) = 𝑤(𝑡.(𝑖)). Then:

∀𝑘 ∈ [0, size(𝑢)[, 𝑢.(𝑘) = 𝑤(𝑡.(𝑖 − 𝑗 + 𝑘))
Proof. By case distinction on 𝑡 :

• if 𝑡 = s ∈ 𝒩: then by Definition 4.4, 𝑤(𝑡.(𝑖)) = 𝑤(s.(𝑖)) = (ℳ(𝑠)).(𝑖) = 𝑢.(𝑗). Therefore 𝑢 = ℳ(𝑠)
and 𝑖 = 𝑗, and still by Definition 4.4:

∀𝑘 ∈ [0, size(𝑢)[,𝑤(𝑡.(𝑘)) = 𝑤(𝑡.(𝑖 − 𝑗 + 𝑘)) = 𝑢.(𝑘)
• if 𝑡 = 𝑡1 × 𝑡2 and 0 ≤ 𝑖 < size(𝑡1), then 𝑤(𝑡.(𝑖)) = 𝑡1.(𝑖) = 𝑢.(𝑗). Therefore 𝑢 = 𝑡1 and 𝑖 = 𝑗, and:

∀𝑘 ∈ [0, size(𝑢)[,𝑤(𝑡.(𝑘)) = 𝑤(𝑡.(𝑖 − 𝑗 + 𝑘)) = 𝑢.(𝑘)
• if 𝑡 = 𝑡1 × 𝑡2 and size(𝑡1) ≤ 𝑖 < size(𝑡), then by letting 𝑚 = 𝑖 − size(𝑡1), Definition 4.4 applies:
𝑤(𝑡.(𝑖)) = 𝑡2.(𝑚) = 𝑢.(𝑗). Therefore 𝑢 = 𝑡2 and 𝑗 = 𝑚 = 𝑖 − size(𝑡1), and:

∀𝑘 ∈ [0, size(𝑢)[,𝑤(𝑡.(𝑘)) = 𝑤(𝑡.(𝑖 − 𝑗 + 𝑘)) = 𝑢.(𝑘)
• The other cases are similar.

Lemma 4.3. Given two types of 𝑡, 𝑢 ∈ 𝕋 , if any of the address types of 𝑡 is a subtype of an address type 𝑢,
i.e. if:

∃𝑖 ∈ [0, size(𝑡)[, ∃𝑗 ∈ [0, size(𝑢)[, 𝑡 .(𝑖) ⪯ 𝑢.(𝑗)
then 𝑡 contains 𝑢.

40 CHAPTER 4. Physical types

Proof. Assume the existence of 𝑖 and 𝑗 such that the above is true. Then, there exist a finite chain of the
form:

𝑡 .(𝑖) ⪯ 𝑡1.(𝑖1) ⪯ 𝑡2.(𝑖2) ⪯ ⋯ ⪯ 𝑡𝑛 .(𝑖𝑛) ⪯ 𝑢.(𝑗)
where each 𝑡𝑘+1.(𝑖𝑘+1) is the weakening of 𝑡𝑘 .(𝑖𝑘). This chain is finite because we only consider finite
types that do not strictly contain themselves (Definition 4.1). Moreover, it is easy to show that for all
𝑘 ∈ {0,… , 𝑛}, 𝑖𝑘 is within the bounds of 𝑡𝑘 (by Definition 4.4). Therefore, we can use Lemma 4.2 to
show by straightforward induction that 𝑡 contains 𝑡1, which contains 𝑡2, and so on. By transitivity of
“contains”, 𝑡 contains 𝑢.

We now show that address subtyping is an over-approximation of aliasing relations. This will also
enable us to verify the safety of memory writes by verifying that they preserve the typing of the heap.

Definition 4.7 (Set of addresses covered by a type). Let ℒ ∈ 𝕃. The set of addresses covered by a type
𝑡 ∈ 𝕋 is:

addrℒ(𝑡) =
size(𝑡)−1

⋃
𝑖=0

{𝑎 ∈ 𝔸 | ℒ(𝑎) ⪯ 𝑡.(𝑖)}

Theorem 4.4. Let 𝑡, 𝑢 ∈ 𝕋 . Either 𝑡 and 𝑢 cover disjoint regions, or one contains the other, i.e.:

addrℒ(𝑡) ∩ addrℒ(𝑢) ≠ ∅ ⟹ 𝑡 contains 𝑢 or 𝑢 contains 𝑡
Proof. Straightforward consequence of Lemmas 4.1 and 4.3.

Address types can therefore be used to soundly infer absence of aliasing, in a way similar to Type-based
Alias Analysis [DMM98] but on pointer types with offsets rather than on value types.

Example 4.3. The type uf does not contain dll, nor does dll contain uf. This implies that the memory
regions covered by these two types are disjoint. In Example 4.1, we have addrℒ(uf) = [0x2c, 0x2f] ∪
[0x6c, 0x6f] ∪ [0x8c, 0x8f], while addrℒ(dll) = [0x24, 0x2b] ∪ [0x64, 0x6b] ∪ [0x84, 0x8b].

4.2.3 Types as sets of values

We now give the meaning of types in terms of an interpretation function. The interpretation of a type
depends on a labelling, and on a valuation of the symbolic variables 𝓋 ∶ 𝕍 ♯ → 𝕍 . Given such a
valuation and an argument value, a predicate can be evaluated to a truth value in a straightforward
way. We denote eval𝓋 ∶ pred × 𝕍 → 𝔹 this evaluation function.

Definition 4.8 (Interpretation of a type). The interpretation operator with respect to a labelling ℒ and
a valuation 𝓋 ∈ 𝕍 ♯ → 𝕍 , denoted ⦇ ⋅ ⦈ℒ,𝓋 ∶ 𝕋 → 𝒫(ℕ), is defined by:

⦇ word𝑛 ⦈ℒ,𝓋 = 𝕍𝑛
⦇ n ⦈ℒ,𝓋 = ⦇ℳ(𝑛) ⦈ℒ,𝓋

⦇ 𝑡1 × 𝑡2 ⦈ℒ,𝓋 = {𝑣1 ∶∶ 𝑣2 | 𝑣1 ∈ ⦇ 𝑡1 ⦈ℒ,𝓋, 𝑣2 ∈ ⦇ 𝑡2 ⦈ℒ,𝓋}
⦇ 𝑡[𝑠] ⦈ℒ,𝓋 = {𝑣0 ∶∶ 𝑣1 ∶∶ ⋯ ∶∶ 𝑣𝑠−1 | 𝑣0,… , 𝑣𝑠−1 ∈ ⦇ 𝑡 ⦈ℒ,𝓋}

⦇ {𝑥 ∶ 𝑡 | 𝑝(𝑥)} ⦈ℒ,𝓋 = {𝑣 ∈ ⦇ 𝑡 ⦈ℒ,𝓋 | eval𝓋(𝑝, 𝑣) = true}
⦇ 𝑡 .(𝑘)∗ ⦈ℒ,𝓋 = {0} ∪ {𝑎 ∈ 𝔸 | ℒ(𝑎) ⪯ 𝑡.(𝑘)}

We now define another order relation, this time on types, that expresses a subtyping at the value
level:

4.2. Definitions 41

Definition 4.9 (Value-centered subtyping). The relation ⪯𝕋 ⊆ 𝕋 × 𝕋 is defined inductively by the fol-
lowing rules:

𝑡 ⪯𝕋 wordsize(𝑡) {𝑥 ∶ 𝑡 | 𝑝(𝑥)} ⪯𝕋 𝑡
𝑡 .(𝑖) ⪯ 𝑢.(𝑗)

𝑡 .(𝑖)∗ ⪯𝕋 𝑢.(𝑗)∗

From this definition follows that ⦇ ⋅ ⦈ℒ,𝓋 is monotone with respect to the ⪯𝕋 relation:

Lemma 4.5 (Monotonicity). Given ℒ ∈ 𝕃, 𝓋 ∶ 𝕍 ♯ → 𝕍 , given two types 𝑡 and 𝑢 in 𝕋 ,

𝑡 ⪯𝕋 𝑢 ⟹ ⦇ 𝑡 ⦈ℒ,𝓋 ⊆ ⦇ 𝑢 ⦈ℒ,𝓋

As a consequence, ⪯𝕋 is a subtyping in the sense of Liskov [LW94], i.e. if 𝑡 ⪯𝕋 𝑢 then all properties of
values of type 𝑡 hold for values of type 𝑢.

Example 4.4. In the labelling of Example 4.1, ⦇ node.(4)∗ ⦈ℒ,𝓋 is the set {0x0, 0x24, 0x64, 0x84}, which
is the same set as ⦇ dll.(0)∗ ⦈ℒ,𝓋.

The following lemma states that if a value has a compound type 𝑢, modifying a member of type 𝑡 of
that compound type preserves typing as long as the new sub-value is in ⦇ 𝑡 ⦈ℒ,𝓋.

Example 4.5 (Modifying a field of a value of type node). Given ℒ a labelling and 𝓋 a valuation, consider
a value 𝑣 ∈ ⦇ node ⦈ℒ,𝓋. Because node.(4) ⪯ dll.(0), it is guaranteed that replacing the dll field of 𝑣 , i.e.
replacing bytes 4 to 11 of 𝑣 with a value 𝑤 ∈ ⦇ dll ⦈ℒ,𝓋 results in a value that is still in the interpretation
of node.

More formally:

Lemma 4.6. Given 𝑢.(𝑖), 𝑡 .(0) ∈ 𝕋A, given 𝓋 ∶ 𝕍 ♯ → 𝕍 a valuation and ℒ a labelling, suppose 𝑢.(𝑖) ⪯ 𝑡.(0).
For all 𝑣 , 𝑣 ′ ∈ 𝕍size(𝑡), for all 𝑎 ∈ 𝕍𝑖, 𝑏 ∈ 𝕍size(𝑢)−𝑖−size(𝑡):

𝑎 ∶∶ 𝑣 ∶∶ 𝑏 ∈ ⦇ 𝑢 ⦈ℒ,𝓋 ∧ 𝑣 ′ ∈ ⦇ 𝑡 ⦈ℒ,𝓋 ⟹ 𝑎 ∶∶ 𝑣 ′ ∶∶ 𝑏 ∈ ⦇ 𝑢 ⦈ℒ,𝓋

Proof. By induction on the structure of 𝑢.

• If 𝑢 = word𝑛: then necessarily from the subtyping definition (Definition 4.5) 𝑢 = 𝑡 and 𝑖 = 0; thus
𝑎, 𝑏 ∈ 𝕍0 (i.e. 𝑎 and 𝑏 are empty bit vectors) and the result trivially holds.

• If 𝑢 = 𝑡0.(𝑖)∗: same proof as the previous case.
• If 𝑢 = {𝑥 ∶ 𝑡0 | 𝑝(𝑥)}: same proof as the previous case.
• If 𝑢 = n ∈ 𝒩: then ⦇ 𝑢 ⦈ℒ,𝓋 = ⦇ℳ(𝑢) ⦈ℒ,𝓋, and the induction hypothesis on ℳ(𝑢) yields the
result.

• If 𝑢 = 𝑡1 × 𝑡2: then either 𝑡1.(𝑖) ⪯ 𝑡.(0) or 𝑡2.(𝑖 − size(𝑡1)) ⪯ 𝑡.(0). Let us treat the first case, the
second being similar. Let 𝑏1 denote the bit vector consisting in the first size(𝑡1) − 𝑖 − size(𝑡) bits of
𝑏, and 𝑏2 the remaining part of 𝑏. The induction hypothesis on 𝑡1 yields 𝑎 ∶∶ 𝑣 ′ ∶∶ 𝑏1 ∈ ⦇ 𝑡1 ⦈ℒ,𝓋,
from which 𝑎 ∶∶ 𝑣 ′ ∶∶ 𝑏1 ∶∶ 𝑏2 = 𝑎 ∶∶ 𝑣 ′ ∶∶ 𝑏 ∈ ⦇ 𝑢 ⦈ℒ,𝓋.

• If 𝑢 = 𝑡0[𝑛]: The proof for arrays is quite similar to the product case.

42 CHAPTER 4. Physical types

4.3 Typed semantics

We now define a typed semantics for While-memory. This semantics is conservative in that it ex-
cludes some executions of the untyped semantics J⋅K. Like the untyped semantics, it is not computable
in general. Its goal is to serve as a step towards building an analysis that verifies the preservation of
typing invariants: we will show that, by enforcing the well-typedness of operations, a non-trivial in-
variant on the state can be preserved, namely, the “structural invariants” that we informally presented
in Section 4.1. Our shape abstract domain that we introduce in Chapter 5 uses this principle.

The set of store typings is 𝕏 → 𝕋 and the set of typed states is 𝕊𝑡 = Σ × (𝕏 → 𝕋) × ℍ × 𝕃. We
introduce the notion of well-typed state, in which the values in memory are consistent with their type
labels, and values in the variable store are consistent with the interpretation of their types.

Definition 4.10. A state (σ, Γ, ℎ,ℒ) is said to be well typed under valuation 𝓋 if

1. The labelling is consistent with heap values: for every address 𝑎 ∈ 𝔸, if there exists a type 𝑡 such
that ℒ(𝑎) = 𝑡.(0), then ℎ[𝑎..(𝑎+size(𝑡))] ∈ ⦇ 𝑡 ⦈ℒ,𝓋;

2. Variables are well-typed: for all variable name 𝑥 ∈ 𝕏, σ(𝑥) ∈ ⦇ Γ(𝑥) ⦈ℒ,𝓋.

4.3.1 Typed semantics of expressions

Typing of expressions aims at proving that the evaluation of an expression will either return a value
consistent with the type or a runtime error, such as division by zero or null pointer dereference. We
do not attempt to use types to prevent all runtime errors; for instance, well-typed computations are not
necessarily free from divisions by zero; the analysis must discharge such verifications separately. Given
a valuation 𝓋, a store σ, a heap ℎ, a labeling ℒ, a typing of variables Γ, an expression 𝑒, and a type 𝑡 , we
write (σ, ℎ,ℒ, Γ) ⊢𝓋 𝑒 ∶ 𝑡 when expression 𝑒 can be given type 𝑡 in the typing state (σ, ℎ,ℒ, Γ).

The typing rules for expressions are given in Figure 4.4.
The type of variables is resolved by Γ (rule Env). Constants are given type word𝑛 (rule Const).
Memory reads and pointer arithmetic are typed using corresponding offset calculation over physical

types (rules Load, AddR, AddL and SubR). If one of the operands of an addition is a non-null pointer,
and the other operand is such that the resulting offset is not out of bounds, then the resulting type is
a pointer with the new offset. Note that this is only one of the possible choices: another semantics
could be defined, in which pointer offsets are allowed to go out of bounds, and the bound checking is
only made upon dereferencing. Pointer arithmetic can also be performed with subtractions (rule SubR),
but the pointer can only be the left-hand-side operand. For both additions and subtractions, when the
premises of rules AddR, AddL or SubR do not apply, then the Binop rule applies.

The Binop rule states that other binary operators result in the generic type word𝑛 .
Finally, rule SubVal is an upcasting rule in that it states that an expression of some type 𝑡 is also

judged to have all the supertypes of 𝑡 (in the sense of ⪯𝕋); rule Refine states that the type of an expres-
sion can be refined with all predicates verified by the expression value —a form of downcasting. Due to
these two rules, an expression will generally have several types.

This typing is sound in the following sense:

Theorem 4.7 (Soundness of typing of expressions). For all expressions 𝑒 of While-memory, for all valu-
ations 𝓋 ∈ 𝕍 ♯ → 𝕍 , states 𝑠 = (σ, Γ, ℎ,ℒ) ∈ 𝕊𝑡 and types 𝑡 ∈ 𝕋 , if 𝑠 is well typed under 𝓋 and 𝑠 ⊢𝓋 𝑒 ∶ 𝑡
and ℰJ𝑒K(σ, ℎ) = 𝑣 , then 𝑣 ∈ ⦇ 𝑡 ⦈ℒ,𝓋.

Proof. By induction on the typing rules.

• rule Env: ℰJ𝑒K(σ, ℎ) = σ(𝑥) and 𝑡 = Γ(𝑥). Therefore since 𝑠 is well typed, 𝑣 ∈ ⦇ 𝑡 ⦈ℒ,𝓋.

4.3. Typed semantics 43

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑥 ∶ Γ(𝑥) Env
𝑐 ∈ 𝕍𝑛

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑐 ∶ word𝑛
Const

𝑡 ⪯𝕋 𝑢 (σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒 ∶ 𝑡
(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒 ∶ 𝑢 SubVal

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒 ∶ 𝑡 eval𝓋(𝑝,ℰJ𝑒K(σ, ℎ)) = true

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒 ∶ {𝑥 ∶ 𝑡 | 𝑝(𝑥)} Refine

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒 ∶ 𝑢.(𝑖)∗ 𝑢.(𝑖) ⪯ 𝑡.(0) size(𝑡) = ℓ ℰJ𝑒K(σ, ℎ) ≠ 0
(σ, Γ, ℎ,ℒ) ⊢𝓋 ∗ℓ𝑒 ∶ 𝑡 Load

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 ∶ 𝑡.(𝑖)∗
(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒2 ∶ word𝒲 ℰJ𝑒1K(σ, ℎ) = 𝑣1 ≠ 0 ℰJ𝑒2K(σ, ℎ) = 𝑣2 0 ≤ 𝑖 + 𝑣2 < size(𝑡)

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 + 𝑒2 ∶ 𝑡.(𝑖 + 𝑣2)∗
AddR

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 ∶ word𝒲
(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒2 ∶ 𝑡.(𝑖)∗ ℰJ𝑒1K(σ, ℎ) = 𝑣1 ℰJ𝑒2K(σ, ℎ) = 𝑣2 ≠ 0 0 ≤ 𝑣1 + 𝑖 < size(𝑡)

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 + 𝑒2 ∶ 𝑡.(𝑣1 + 𝑖)∗ AddL

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 ∶ 𝑡.(𝑖)∗
(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒2 ∶ word𝒲 ℰJ𝑒1K(σ, ℎ) = 𝑣1 ≠ 0 ℰJ𝑒2K(σ, ℎ) = 𝑣2 0 ≤ 𝑖 − 𝑣2 < size(𝑡)

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 − 𝑒2 ∶ 𝑡.(𝑖 − 𝑣2)∗
SubR

(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 ∶ word𝑛 (σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒2 ∶ word𝑛 ⋄ ∈ {+,−, ×, /,⋯}
(σ, Γ, ℎ,ℒ) ⊢𝓋 𝑒1 ⋄ 𝑒2 ∶ word𝑛

Binop

Figure 4.4: Typing rules for While-memory expressions.

• rule Const: ⦇ word𝑛 ⦈ℒ,𝓋 = 𝕍𝑛 , thus 𝑣 ∈ ⦇ 𝑡 ⦈ℒ,𝓋.
• rule Load: Then by the induction hypothesis if ℰJ𝑒locK(σ, ℎ) is defined then ℰJ𝑒locK(σ, ℎ) = 𝑎 ∈
⦇ 𝑢.(𝑖)∗ ⦈ℒ,𝓋, where 𝑢.(𝑖) ⪯ 𝑡.(0). If ℰJ𝑒locK(σ, ℎ) is undefined then so is 𝑣 , which ends the proof.
Otherwise, we know that 𝑎 ∈ ⦇ 𝑢.(𝑖)∗ ⦈ℒ,𝓋 ⊆ ⦇ 𝑡.(0)∗ ⦈ℒ,𝓋 = {𝑎 ∈ 𝔸 | ℒ(𝑎) ⪯ 𝑡.(0)} ∪ {0}. But we also
have 𝑎 ≠ 0. Therefore ℒ(𝑎) ⪯ 𝑡.(0), and by well-typedness of 𝑠, 𝑣 = ℎ[𝑎..𝑎 + ℓ] ∈ ⦇ 𝑡 ⦈ℒ,𝓋.

• rule AddR: In this case, 𝑡 = 𝑢.(𝑖 + 𝑣2) for some 𝑢 ∈ 𝕋 , and 𝑣 = ℰJ𝑒1 + 𝑒2K(σ, ℎ) = 𝑣1 + 𝑣2. By
induction hypothesis 𝑣1 = ℰJ𝑒1K(σ, ℎ) ∈ ⦇ 𝑢.(𝑖)∗ ⦈ℒ,𝓋. Similarly to the above case, since 𝑣1 ≠ 0 we
deduce that ℒ(𝑣1) ⪯ 𝑢.(𝑖). And since 0 ≤ 𝑖 + 𝑣2 < size(𝑢), Lemma 4.3 yields ℒ(𝑣1 + 𝑣2) ⪯ 𝑢.(𝑖 + 𝑣2).

• rule AddL: Symmetric to the proof for the AddR rule.
• rule SubR: Similar to the AddR case.
• rule Binop: In this case 𝑣 = ℰJ𝑒1⋄𝑒2K(σ, ℎ), if defined, is necessarily an element of𝕍𝑛 = ⦇ word𝑛 ⦈ℒ,𝓋.
• rule SubVal: By induction hypothesis and themonotonicity of ⦇ ⋅ ⦈ℒ,𝓋 with regard to⪯𝕋 (Lemma 4.5).
• rule Refine: By induction hypothesis and by definition of the interpretation of a type (Defini-
tion 4.8).

4.3.2 Typed semantics of statements

The typed semantics of instructions is defined in Figure 4.5. It is identical to the untyped semantics,
except for assignments, memory writes, and dynamic allocation. An assignment not only updates the

44 CHAPTER 4. Physical types

𝒞J ⋅ K𝑡 ∶ stmt × 𝒫(𝕊𝑡) → 𝒫(𝕊𝑡)
𝒞J𝑒K𝑡 S = {(σ, Γ, ℎ,ℒ) ∈ S | ℰJ𝑒K(σ, ℎ) = (ℓ, 𝑣) ∧ 𝑣 ≠ 0}

J ⋅ K𝑡 ∶ stmt × 𝒫(𝕊𝑡) → 𝒫(𝕊𝑡)JskipK𝑡 S = SJP1; P2K𝑡 S = (JP2K𝑡 ∘ JP1K𝑡)S
J𝑥 ∶= 𝑒K𝑡 S = {(σ[𝑥 ← 𝑣], Γ[𝑥 ← 𝑡], ℎ, ℒ) |

𝑠 def= (σ, Γ, ℎ,ℒ) ∈ S,
𝑣 = ℰJ𝑒K(σ, ℎ),
𝑠 ⊢𝓋 𝑒 ∶ 𝑡

}

J∗ℓ𝑒1 ∶= 𝑒2K𝑡 S =

⎧⎪⎪
⎨⎪⎪
⎩

(σ, Γ, ℎ[𝑎..𝑎 + ℓ ← 𝑣],ℒ)

|||||||||

𝑠 def= (σ, Γ, ℎ,ℒ) ∈ S,
𝑠 ⊢𝓋 𝑒1 ∶ 𝑢.(𝑖)∗, 𝑢.(𝑖) ⪯ 𝑡.(0),
𝑠 ⊢𝓋 𝑒2 ∶ 𝑡, size(𝑡) = ℓ,
ℰJ𝑒1K(σ, ℎ) = (𝒲, 𝑎),
𝑎 ≠ 0,
ℰJ𝑒2K(σ, ℎ) = (ℓ, 𝑣)

⎫⎪⎪
⎬⎪⎪
⎭

J𝑥 ∶= malloc(𝑒)K𝑡 S =
⎧⎪
⎨⎪⎩
(

σ[𝑥 ← 𝑎], Γ[𝑥 ← wordℓ.(0)∗],
ℎ[𝑎..𝑎 + ℓ ← 𝑣],
ℒ[𝑎..𝑎 + ℓ ← wordℓ]

)
||||||

(σ, Γ, ℎ,ℒ) ∈ S,
ℰJ𝑒K(σ, ℎ) = (𝒲, ℓ),
ℓ > 0, 𝑣 ∈ 𝕍ℓ,
[𝑎, 𝑎 + ℓ[∩ dom(ℎ) = ∅

⎫⎪
⎬⎪⎭

∪ {(
σ[𝑥 ← (𝒲, 0)],
Γ[𝑥 ← wordℓ.(0)∗],
ℎ, ℒ

) |
(σ, Γ, ℎ,ℒ) ∈ S,
ℰJ𝑒K(σ, ℎ) = (𝒲, ℓ),
ℓ > 0

}

Jif 𝑒 then P1 else P2 endK𝑡 S = JP1K𝑡 (𝒞J𝑒K𝑡 S) ∪ JP2K𝑡 (𝒞J¬𝑒K𝑡 S)Jwhile 𝑒 do P doneK𝑡 S = 𝒞J¬𝑒K𝑡 (lfp F)
where F(X) def= S ∪ JPK𝑡 (𝒞J𝑒K𝑡 X)

Figure 4.5: Typed semantics of While-memory statements.

4.4. Extending the type system: directions and pitfalls 45

store with the new value, but updates the type environment with a valid type for the right-hand-side
expression. Formally, since an expression will in general have several types, this makes the semantics
non-deterministic.

Memory writes, on the other hand, are deterministic. The difference between memory writes in the
untyped semantics and in this one is that this semantics excludes ill-typed memory writes, i.e. writes
that would introduce an inconsistency between the heap labelling and the values.

Finally, dynamic allocation behaves identically to its untyped counterpart, except that it attributes
the type wordℓ to the allocated region, where ℓ is the size of that region.

The typed semantics preserves the well-typedness of states:

Theorem 4.8 (Preservation of typing of states). Let 𝓋 ∶ 𝕍 ♯ → 𝕍 be a valuation and S ⊆ 𝕊𝑡 be a set of
well-typed states under 𝓋. For all programs P, for all 𝑠1 ∈ JPK𝑡 S, 𝑠1 is well typed under 𝓋.

Proof. By induction on the structure of P. We skip the easy cases of skip and sequence.

• assignment (𝑥 ∶= 𝑒): The only change between 𝑠1 and the states of S is the value and type of 𝑥 , so
we only have to verify that they are consistent. We have σ(𝑥) = ℰJ𝑒K(σ, ℎ), thus by Theorem 4.7
σ(𝑥) ∈ ⦇ 𝑡 ⦈ℒ,𝓋.

• memory write (∗ℓ𝑒1 ∶= 𝑒2): Let ℎ′ = ℎ[𝑎..𝑎 + ℓ ← 𝑣]. We need to verify the consistency between
the modified heap region and the (unchanged) labelling, i.e. we need to verify:

∀𝑎0 ∈ 𝔸, ∀𝑤 ∈ 𝕋 , ℒ(𝑎0) = 𝑤.(0) ⟹ ℎ′[𝑎0..𝑎0 + size(𝑤)] ∈ ⦇ 𝑤 ⦈ℒ,𝓋.
Let 𝑎0 and𝑤 be such thatℒ(𝑎0) = 𝑤.(0). Two cases are possible: either the heap region [𝑎0, 𝑎0 + size(𝑤)[
intersects the modified region, or not.

– If [𝑎0, 𝑎0 + size(𝑤)[∩ [𝑎, 𝑎 + ℓ[= ∅, then ℎ′[𝑎0..𝑎0 + size(𝑤)] = ℎ[𝑎0..𝑎0 + size(𝑤)] ∈ ⦇ 𝑤 ⦈ℒ,𝓋.
– Otherwise, then 𝑎 = 𝑎0 + 𝑗 for some 𝑗, and ℒ(𝑎0 + 𝑗) = 𝑤.(𝑗) = ℒ(𝑎). Since 𝑠 ⊢𝓋 𝑒1 ∶ 𝑢.(𝑖)∗

and 𝑎 ≠ 0, Theorem 4.7 yields ℒ(𝑎) ⪯ 𝑢.(𝑖). Therefore 𝑤.(𝑗) ⪯ 𝑢.(𝑖) ⪯ 𝑡.(0). By well-typing
of 𝑠, we have ℎ[𝑎0..𝑎0 + size(𝑤)] = 𝑣1 ∶∶ 𝑣2 ∶∶ 𝑣3 ∈ ⦇ 𝑤 ⦈ℒ,𝓋 (where 𝑣1 ∈ 𝕍𝑖, 𝑣2 ∈ 𝕍size(𝑡),
𝑣3 ∈ 𝕍size(𝑤)−𝑖−size(𝑡)). Since 𝑠 ⊢𝓋 𝑒2 ∶ 𝑡 , 𝑣 ∈ ⦇ 𝑡 ⦈ℒ,𝓋, Lemma 4.6 yields:

ℎ′[𝑎0..𝑎0 + size(𝑤)] = 𝑣1 ∶∶ 𝑣 ∶∶ 𝑣3 ∈ ⦇ 𝑤 ⦈ℒ,𝓋

• memory allocation (𝑥 ∶= malloc(𝑒)): We let (σ1, Γ1, ℎ1,ℒ1) = 𝑠1. If σ1(𝑥) = (𝒲, 0), then trivially
σ1(𝑥) ∈ ⦇ Γ1(𝑥) ⦈ℒ1,𝓋 and thus 𝑠1 is well typed. Otherwise, 𝑠1 is also well typed because σ1(𝑥)
is indeed the address of a region of type wordℓ, and in addition the contents of that region is in
⦇ wordℓ ⦈ℒ1,𝓋 = 𝕍ℓ.

• conditional (if 𝑒 then P1 else P2 end): The condition operators 𝒞J𝑒K𝑡 and 𝒞J¬𝑒K𝑡 only remove
states, and by induction hypothesis JP1K𝑡 and JP2K𝑡 preserve typing, therefore all elements of the
union are well typed under 𝓋.

• loop (while 𝑒 do P done): F is amonotone function that preserves typing (by induction hypothesis),
therefore all elements of lfp F are well typed.

4.4 Extending the type system: directions and pitfalls

It is worth pointing out that the grammar of physical types could be extended, and the criteria of sub-
typing between address types modified, in ways that retain the preservation of typing by the typed
semantics (which constitutes the base of our static analysis).

Themain property that extensions should preserve is the fact that types either cover disjoint regions,
or are in a containment relation (Theorem 4.4).

46 CHAPTER 4. Physical types

4.4.1 Invalid address subtyping rules

Intuitively, one may want to introduce the rule that the address of a refinement type is also the address
of the underlying type without the predicate, via subtyping. In other words, one may want to introduce
the following weakening:

∀𝑘 ∈ [0, size(𝑡)[, 𝑤({𝑥 ∶ 𝑡 | 𝑝(𝑥)}.(𝑘)) = 𝑡.(𝑘)
such that

∀𝑘 ∈ [0, size(𝑡)[, {𝑥 ∶ 𝑡 | 𝑝(𝑥)}.(𝑘) ⪯ 𝑡.(𝑘).
However, this leads to a non-type-preserving semantics:

Example 4.6. Assume the above rule, and consider the semantics of the following program, applied to
an initial state 𝑠 in which variable 𝑦 has the type {𝑥 ∶ word4 | 𝑥 ≤ 5}.(0)∗:

// Assumption: 𝑦 ∶ {𝑥 ∶ word4 | 𝑥 ≤ 5}.(0)∗
∗4𝑦 ∶= 42

When computing its semantics J∗4𝑦 ∶= 42K𝑡 applied to {𝑠}, thememorywrite is considered valid because
42 has type word4, and {𝑥 ∶ word4 | 𝑥 ≤ 5}.(0) ⪯ word4.(0). Yet, the resulting memory states are ill-typed:
the region pointed to by 𝑦 contains the value 42, which is not in the interpretation of its type.

The key idea is that address subtyping describes containment relations between types in memory, and
is not related to the possible values contained by these types. This is the reason why value-centered sub-
typing ⪯𝕋 is distinct from address subtyping. More generally, it would break the semantics to introduce
the rule that:

𝑡 ⪯𝕋 𝑢 ⟹ 𝑡.(𝑘) ⪯ 𝑢.(𝑘)
as the above example testifies. Similarly, for pointer types, one may try to introduce the rule that, if
two address types are in a subtyping relation, then so are the pointers to these addresses, i.e. to add the
following weakening rule:

∀𝑘 ∈ [0,𝒲[, 𝑤((𝑡.(0)∗).(𝑘)) = (𝑢.(0)∗).(𝑘) if 𝑡 .(0) ⪯ 𝑢.(0)
such that:

∀𝑘 ∈ [0,𝒲[, (𝑡.(0)∗).(𝑘) ⪯ (𝑢.(0)∗).(𝑘) if 𝑡 .(0) ⪯ 𝑢.(0)
However, this also leads to a non-type-preserving semantics, as exemplified by the following program:

Example 4.7. Consider again type node:

ℳ ∶ node_kind ↦ {𝑥 ∶ word4 | 𝑥 ≤ 5}
uf ↦ uf.(0)∗
dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}
node ↦ node_kind × dll × uf

And the program:

// Assumption: 𝑥 ∶ (node.(0)∗).(0)∗, 𝑦 ∶ int.(0)∗
∗4𝑥 ∶= 𝑦;
∗4(∗4𝑥 + 4) ∶= 0

4.4. Extending the type system: directions and pitfalls 47

Type node contains the type node_kind of size 4 bytes as its first component. Therefore, assuming the
incorrect rule above, (node.(0)∗).(0) ⪯ (node_kind.(0)∗).(0). As a consequence, the first statement is
considered well-typed; 𝑥 now points to a region of type int.(0)∗, and not node.(0)∗ as its type should
guarantee. The execution of the second instruction succeeds because (∗4𝑥 + 4) has type node.(4)∗;
however, this statement writes past the region initially pointed to by 𝑦 (of size 4), into a region of
arbitrary type. This corresponds to an out-of-bounds memory write.

4.4.2 Possible extensions

Relations between structure fields

So far, we have only considered predicates on individual fields of composite types. One may want to
consider predicates relating two or more fields, such as:

struct foo { int x; int y; int z; }; /* x < y */

Physical types already allow to express this kind of predicates, but in a rather cumbersome way since it
requires to use bitwise operators. For example, the physical type corresponding to the above C structure
would be:

ℳ(foo) = {𝑣 ∶ word4 × word4 × word4 | (𝑣 & 0xffffffff) < ((𝑣 >> 32) & 0xffffffff)}
where>> is the usual left shift operator as used in C. Then, assuming a numerical abstract domain able to
express this kind of bitwise predicates, such typing predicates can be verified (see analysis details in next
chapter). However, there is clearly room for improvement in the syntax of such predicates, possibly by
introducing record types and letting predicates relate record fields. More generally, introducing named
fields, rather than relying on simple binary products, may improve the usability of the tools constructed
from this type system.

Another limitation is that, due to the definition of address subtyping, it is currently impossible to
write a well-typed program that modifies only the z field of structure foo. This is because the following
address subtyping does not hold:

foo.(8) ⪯ word4.(0)
However, it would be a reasonable subtyping to have, since it preserves Lemma 4.6 and thus does not
break the type-preserving properties of the semantics. Maybe address subtyping could be adapted so
that local modifications of non-constrained fields can be allowed, without changing other components
of the type system.

Dependent types

The current type system allows to relate different fields of a composite type, but still has limits. Consider,
for instance, a program manipulating strings, represented as an array of bytes, and the length of that
array, e.g.:

struct string {
unsigned int length;
char * ptr_to_start;

};

struct string s;
s.length = 24;
s.ptr_to_start = malloc(24 * sizeof(char));

48 CHAPTER 4. Physical types

Current types allow to relate the length of the array and the length field, but only via global symbolic
value. For instance, the string type above could be represented by the physical type:

ℳ(string) = {𝑥 ∶ word4 | 𝑥 = 𝕧ℓ} × word1[𝕧ℓ].(0)∗
where 𝕧ℓ is a symbolic variable, which is used here as the array length. Note that this uses a symbolic
variable as the length of an array, which is not possible using physical types defined up to now, but is
possible in abstract physical types defined in Chapter 5, and hence is possible in our analysis.

The limitation with this approach is that all instances of string refer to the same 𝕧ℓ, and therefore
all buffers must have the same length. A natural extension would be to introduce types quantified by
a value, either universally or existentially. The grammar of types may be extended as follows, drawing
inspiration from dependent types:

𝕋 ∋ 𝑡 ∶∶= ⋯
| Π𝕧 . 𝑡 (type constructor quantified by a value)
| 𝑡(𝕧) (type constructor application)
| Σ𝕧 . 𝑡 (existentially quantified type)

For instance, the string type above would be represented by a type universally quantified by a value
which is both the value of length and the length of the pointed array:

ℳ(string) = Π𝕧 . {𝑥 ∶ word4 | 𝑥 = 𝕧} × word1[𝕧].(0)∗
Then, the C type:

struct msg {
int flags;
struct string str;

};

Could be represented by:
ℳ(msg) = word4 × (Σ𝕧 . string(𝕧))

i.e. the product of an integer and a string whose parameter is an existentially quantified value.
The extension of our definitions to accommodate the addition of full-fledged dependent types re-

mains to be done. However, two reasons suggest that this direction may be relevant: our abstract
interpretation framework seems particularly suited to introducing symbolic variables on the fly; and
in our system, type inference is already undecidable (but useful in practice, as the next chapters will
show), therefore introducing value-quantified types will not necessarily make it intractable.

Chapter5
Type-based shape abstract domain

Outline of the current chapter

5.1 Informal overview of the abstraction 51
5.2 Abstract physical types 51

5.2.1 Motivation . 51
5.2.2 Definition . 52
5.2.3 Abstract subtyping . 52
5.2.4 Abstract join . 54

5.3 State abstraction 56
5.3.1 Type-based shape domain . 56
5.3.2 Combined shape-numeric abstraction 56

5.4 Abstract semantics 57
5.4.1 Abstract semantics of expressions . 58
5.4.2 Soundness of expression semantics . 60
5.4.3 Abstract semantics of statements . 61
5.4.4 Soundness of the abstract semantics 65
5.4.5 Approximation of aliasing relations . 66

5.5 Analysis example 67
5.6 Conclusion and related work 68

In this chapter, we describe our abstract domain based on physical types. First, we present the abstrac-
tion informally on the union-find example introduced in Chapter 4. We then show that some common
properties cannot be represented in physical types, leading us to define an abstraction of these types
(Section 5.2) in which pointer offsets are managed by an independent numerical abstract domain. Then,
Section 5.3 covers the main abstraction, and Section 5.4 describes the abstract semantics of the analysis
and the associated soundness theorems. Finally, in Section 5.4.5 we describe how to use physical types
to approximate aliasing between regions, which we will use in the refined abstraction of Chapter 6.

49

50 CHAPTER 5. Type-based shape abstract domain

1 typedef struct uf {
2 struct uf* parent;
3 } uf;
4

5 typedef struct dll {
6 struct dll *prev; /* != null. */
7 struct dll *next; /* != null. */
8 } dll;
9

10 typedef unsigned int node_kind;
11 typedef struct node {
12 node_kind kind; /* kind <= 5. */
13 dll dll;
14 uf uf;
15 } node;
16

17 uf *uf_find(uf *x) {
18 while(x->parent != 0) {
19 uf *parent = x->parent;
20 if(parent->parent == 0)
21 return parent;
22 x->parent = parent->parent;
23 x = parent->parent;
24 }
25 return x;
26 }

24 void dll_union(dll *x, dll *y) {
25 y->prev->next = x->next;
26 x->next->prev = y->prev;
27 x->next = y; y->prev = x;
28 }
29

30 void uf_union(uf *x, uf *y) {
31 uf *rootx = uf_find(x);
32 uf *rooty = uf_find(y);
33 if(rootx != rooty)
34 rootx->parent = rooty;
35 }
36

37 void merge(node *x, node *y) {
38 dll_union(&x->dll, &y->dll);
39 uf_union(&x->uf, &y->uf);
40 }
41

42 node *make(node_kind kind) {
43 node *n = malloc(sizeof(node));
44 n->kind = kind;
45 n->dll.next = &n->dll;
46 n->dll.prev = &n->dll;
47 n->uf.parent = NULL;
48 return n;
49 }

Figure 4.1: An algorithm for union-find and listing elements in a partition. (repeated from page 34)

0 1 2

0x0

0x20∶ 0x60∶ 0x80∶

(a) Concrete state.

ℳ ∶ node_kind ↦ {𝑥 ∶ word4 | 𝑥 ≤ 5}
uf ↦ uf.(0)∗
dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}
node ↦ node_kind × dll × uf

(b) Physical types.

∀𝓋, ∀(σ, ℎ,ℒ, Γ) well-typed state, ∀𝑣 value ∶
𝑣 ∈ ⦇ node.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ 𝑣 + 4 ∈ ⦇ node.(4) ⦈ℒ,𝓋 ∧ 𝑣 + 4 ≠ 0 (1)

⦇ node.(4)∗ ⦈ℒ,𝓋 ⊆ ⦇ dll.(0)∗ ⦈ℒ,𝓋 (2)
𝑣 ∈ ⦇ dll.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ ℎ[𝑣..𝑣 + 4] ∈ ⦇ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} ⦈ℒ,𝓋 (3)

⦇ uf.(0)∗ ⦈ℒ,𝓋 ∩ ⦇ dll.(0)∗ ⦈ℒ,𝓋 = {0} (4)
(c) Some structural invariants entailed by ℳ

Figure 4.2: Concrete state, physical types and example structural invariants. (repeated from page 35)

5.1. Informal overview of the abstraction 51

𝕧0 ∶ node.(0)∗𝑥

𝕧1 ∶ node.(0)∗𝑦
𝕧0 ≠ 0
𝕧1 ≠ 0

Figure 5.1: Abstract state at beginning of the merge function.

5.1 Informal overview of the abstraction

Consider again the example code of Figure 4.1, repeated on page 50. The abstract state shown in Fig-
ure 5.1 represents the initial state when execution of the merge function begins (this function requires
that it is given non-null pointers to node as arguments). Each variable is associated to both an abstract
type describing possible values stored in the variable, and to a symbolic variable used to attach nu-
merical constraints to this value. For instance, variable x is bound to physical type node.(0)∗, meaning
that its value belongs to the set of possible values of that type, ⦇ node.(0)∗ ⦈ℒ,ν; furthermore it is bound
to symbolic variable 𝕧0 which is constrained to be non-null. Combined with structural invariants of
Equations (1), (2) and (3), we can verify that x+4 (the low-level counterpart of &x->dll) points to a valid
address, that can be safely casted as type dll.(0)∗, and that reading 4 bytes from this address will return
a value that has type {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}. Eventually, we can verify that each statement preserves
these structural invariants, which entails that all memory accesses performed by the call to dll_union
are valid.

5.2 Abstract physical types

5.2.1 Motivation

Address types can represent pointers into arrays very precisely, e.g., if int is a type of size 4 bytes, then
int[10].(8) represents the address of the third element in an array of 10 ints. However, there is no type
representing “an element of unknown index in a int[10] array”. In array analysis, in order to compute
invariants, analysis tools must be able to represent elements that are at a valid, but unknown, index.
Less commonly, it can sometimes be useful to represent pointers that may point to several fields in a C
structure.

We therefore define a domain of abstract types, 𝕋 ♯, which replaces exact pointer offsets by symbolic
values.

Example 5.1. The following abstract type represents the address of a valid element in an array of ten
ints:

int[10].(𝕚) where 𝕚 ∈ [0, 39] and 𝕚 ≡ 0 (mod 4)

The form of logical constraints expressible on symbolic values depends on the numeric domain 𝔻num
used in the analysis, of concretization γD ∶ 𝔻num → 𝒫(𝕍 ♯ → 𝕍). The numeric constraints in the
example above can be expressed by the numeric domain of intervals with congruence information.

The secondmotivation for abstract types is to add the possibility to represent arrays of symbolic size.
This can be useful to analyze a number of programs, notably programs that allocate arrays of dynamic
size. The size of such arrays can be represented by a symbolic variable. Symbolic variables also allow to
represent statically allocated arrays whose size is a parameter of the analysis; this is critical to analyze
embedded OS kernels, as they often manipulate a statically allocated arrays of tasks.

52 CHAPTER 5. Type-based shape abstract domain

𝕋 ♯ ∋ 𝕥 ∶∶= 𝑡 (concrete type 𝑡 ∈ 𝕋)
| 𝕥𝑎∗ (pointer type)

𝕥𝑎 ∶∶= 𝑡.(𝕚) (address type with symbolic offset 𝕚 ∈ 𝕍 ♯, 𝑡 ∈ 𝕋)
| 𝑡[𝕤].(𝕚) (address in array, 𝕤, 𝕚 ∈ 𝕍 ♯, 𝑡 ∈ 𝕋)

Figure 5.2: Grammar of abstract physical types.

5.2.2 Definition

Definition 5.1. The grammar of abstract types is defined in Figure 5.2. It is similar to the grammar of
concrete types (Figure 4.3) with two differences:

1. Pointer types may have a symbolic offset rather than a simple integer.

2. A special kind of pointer types, pointer to arrays of symbolic length, is added. Their offsets are also
symbolic.

The concretization γT of an abstract type must account for the symbolic variables and the concrete
values they represent, so it also yields a valuation: γT ∶ 𝕋 ♯ → 𝒫(𝕋 × (𝕍 ♯ → 𝕍)) is defined as:

γT(𝑡) = {(𝑡,𝓋) | 𝓋 ∈ 𝕍 ♯ → 𝕍 } if 𝑡 ∈ 𝕋
γT(𝑡.(𝕚)∗) = {(𝑡.(𝓋(𝕚))∗, 𝓋) | 0 ≤ 𝓋(𝕚) < size(𝑡)}

γT(𝑡[𝕤].(𝕚)∗) = {(𝑡[𝓋(𝕤)].(𝓋(𝕚))∗, 𝓋) | 0 ≤ 𝓋(𝕚) < 𝓋(𝕤) ⋅ size(𝑡)}

Note that abstract types are not nested: abstract pointers point to concrete types, and similarly arrays
of symbolic sizes contain concrete types.

5.2.3 Abstract subtyping

Wenow proceed to define an abstract subtyping relation that approximates the value-centered subtyping
relation ⪯𝕋 of concrete types. By “approximating ⪯𝕋 ”, we mean that if 𝕥1 is a subtype of 𝕥2, then for all
types 𝑡1, 𝑡2 in their respective concretizations, 𝑡1 ⪯𝕋 𝑡2 should hold.

Intuitively, abstract subtyping works as follows:

• If 𝕥1 and 𝕥2 are two concrete types, they can be compared directly using ⪯𝕋 .
• Otherwise, if they are pointers to the same type, abstract subtyping holds if the values represented
by their symbolic offsets are equal.

• If none of the above applies, then we attempt to approximate the abstract types into concrete types
in order to compare them using ⪯𝕋 .

We assume that the numerical domain provides the possibility to test equality on two symbolic
variables in two different numerical abstract states:

Definition 5.2 (Equality test on symbolic variables). We assume that the numerical domain 𝔻num pro-
vides an operation 𝕚 𝓋♯1=𝓋♯2 𝕛 for any 𝓋♯1,𝓋♯2 ∈ 𝔻num and 𝕚, 𝕛 ∈ 𝕍 ♯, such that:

𝕚 𝓋♯1=𝓋♯2 𝕛 ⟹ ∀𝓋1 ∈ γnum(𝓋♯1), ∀𝓋2 ∈ γnum(𝓋♯2), 𝓋1(𝕚) = 𝓋2(𝕛)

5.2. Abstract physical types 53

To simplify the expression of the soundness theorem, let us define a “combined” type-numeric con-
cretization function:

Definition 5.3. The function γT,num ∶ 𝕋 ♯ × 𝔻num → 𝒫(𝕋 × (𝕍 ♯ → 𝕍)) is defined as:

γT,num(𝕥,𝓋♯) = {(𝑡,𝓋) ∈ γT(𝕥) | 𝓋 ∈ γnum(𝓋♯)}
We now define an operator to obtain a concrete type from an abstract one.

Definition 5.4. Given 𝓋♯ ∈ 𝔻num, the function conc𝓋♯ ∶ 𝕋 ♯ → 𝕋 is defined as follows:

conc𝓋♯(𝑡) = 𝑡 if 𝑡 ∈ 𝕋
conc𝓋♯(𝑡.(𝕚)∗) = 𝑡.(𝑖)∗ if 𝓋♯ ⊨ 𝕚 = 𝑖 ∧ 0 ≤ 𝑖 < size(𝑡), with 𝑖 ∈ ℕ

conc𝓋♯(𝑡[𝕤].(𝕚)∗) = 𝑡.(𝑘)∗ if 𝓋♯ ⊨ 0 ≤ 𝕚 < 𝕤 ⋅ size(𝑡) ∧ 𝕚 ≡ 𝑘 (mod size(𝑡)), with 𝑘 ∈ ℕ
conc𝓋♯(𝑡[𝕤].(𝕚)∗) = word𝒲 otherwise

conc𝓋♯((𝑡1 × 𝑡2).(𝕚)∗) = 𝑡1.(𝑖)∗ if 𝑡1 = 𝑡2 and 𝓋♯ ⊨ 𝕚 ∈ {𝑖, size(𝑡1) + 𝑖} ∧ 0 ≤ 𝑖 < size(𝑡1), with 𝑖 ∈ ℕ
conc𝓋♯(𝑡.(𝕚)∗) = word𝒲 otherwise

The conc𝓋♯ preserves value-centered subtyping in the following sense:

Lemma 5.1. Given 𝕥 ∈ 𝕋 ♯ and 𝓋♯ ∈ 𝔻num, for all (𝑡,𝓋) ∈ γT,num(𝕥,𝓋♯), 𝑡 ⪯𝕋 conc𝓋♯(𝕥).
Proof. Straightforward from the definition of the weakening of an address type (Definition 4.4), and the
definition of ⪯𝕋 (Definition 4.9).

However, conc𝓋♯ loses precision on pointers to arrays, in the sense that the resulting pointer type is not
a pointer to an array, but a weakening thereof. This is due to the fact that there is no way to represent
pointers to more than one element of an array, as we highlighted in Section 5.2.1 when motivating
abstract types.

We can now define an abstract subtyping on pairs of abstract types and numerical states:

Definition 5.5 (Abstract subtyping relation on 𝕋 ♯ × 𝔻num). Let 𝕥1, 𝕥2 ∈ 𝕋 ♯ and 𝓋♯1,𝓋♯2 ∈ 𝔻num. The
relation ⊑T ⊆ (𝕋 ♯ × 𝔻num) × (𝕋 ♯ × 𝔻num) is defined as follows:

• If 𝕥1 = 𝑡.(𝕚)∗ and 𝕥2 = 𝑡.(𝕛)∗ for some 𝑡 ∈ 𝕋 , then

(𝕥1,𝓋♯1) ⊑T (𝕥2,𝓋♯2) ⟺ 𝕚 𝓋♯1=𝓋♯2 𝕛

• If 𝕥1 = 𝑡[𝕤].(𝕚)∗ and 𝕥2 = 𝑡[𝕤′].(𝕛)∗, for some 𝑡 ∈ 𝕋 , then

(𝕥1,𝓋♯1) ⊑T (𝕥2,𝓋♯2) ⟺ 𝕤 𝓋♯1=𝓋♯2 𝕤′ ∧ 𝕚 𝓋♯1=𝓋♯2 𝕛

• Otherwise:
(𝕥1,𝓋♯1) ⊑T (𝕥2,𝓋♯2) ⟺ 𝕥2 ∈ 𝕋 ∧ conc𝓋♯1(𝕥1) ⪯𝕋 𝕥2

The idea of (𝕥1,𝓋♯1) ⊑T (𝕥2,𝓋♯2) is that a subtyping relation exists on the concrete types for all valuations
matching the constraints of 𝓋♯1 and 𝓋♯2. In other words, abstract subtyping is a sound abstraction of
concrete subtyping:

Theorem 5.2 (Soundness of ⊑T). Given 𝕥1, 𝕥2 ∈ 𝕋 ♯ and 𝓋♯1,𝓋♯2 ∈ 𝔻num, for all (𝑡1,𝓋1) ∈ γT,num(𝕥1,𝓋♯1)
and (𝑡2,𝓋2) ∈ γT(𝕥2,𝓋♯2):

(𝕥1,𝓋♯1) ⊑T (𝕥2,𝓋♯2) ⟹ 𝑡1 ⪯𝕋 𝑡2

54 CHAPTER 5. Type-based shape abstract domain

node[10].(𝕚)∗ ⊑T dll.(2)∗
𝕚 ∈ [48, 160[
𝕚 ≡ 6 (mod 16)

Figure 5.3: Example of abstract type inclusion.

Proof. If 𝕥1 = 𝑡.(𝕚)∗ and 𝕥2 = 𝑡.(𝕛)∗ for some 𝑡 ∈ 𝕋 , then 𝑡1 = 𝑡.(𝓋(𝕚))∗ and 𝑡2 = 𝑡.(𝓋(𝕛))∗ = 𝑡.(𝓋(𝕚))∗ by
the definitions of γT and of the equality test operator (Definitions 5.1 and 5.2). In other words, 𝑡1 = 𝑡2
and therefore 𝑡1 ⪯𝕋 𝑡2. Similar proof if 𝕥1 = 𝑡[𝕤].(𝕚)∗ and 𝕥2 = 𝑡[𝕤′].(𝕛)∗ for some 𝑡 ∈ 𝕋 . Otherwise,
Lemma 5.1 applies and yields the result.

Example 5.2. Consider the types 𝕥1 = node[10].(𝕚)∗ and 𝕥2 = dll.(2)∗, represented in Figure 5.3. We
test the abstract inclusion of (𝕥1,𝓋♯1) in (𝕥2,𝓋♯2), where 𝓋♯1 is such that 𝓋♯1 ⊨ 𝕚 ∈ [48, 160[∧ 𝕚 ≡ 6
(mod 16). Here the inclusion holds because (third case of Definition 5.5) 𝕥2 is a concrete type and
conc𝓋♯1(𝕥1) = node.(6)∗, and node.(6)∗ ⪯𝕋 dll.(2)∗.

5.2.4 Abstract join

The join operator on abstract types is constructed with the same ideas as abstract subtyping: we first
define a join operator on concrete types. Then, joining pointers to the same type yields the most precise
result if those offsets can be verified to be equal. Other cases are handled by using conc𝓋♯ to get back
to the concrete type case.

Definition 5.6 (Concrete type join). The join operator on concrete types ∨𝕋 ∶ 𝕋 × 𝕋 ⇀ 𝕋 is defined as
follows:

• If 𝑡1 = 𝑡.(𝑖)∗ and 𝑡2 = 𝑢.(𝑗)∗, then 𝑡1 ∨𝕋 𝑡2 = 𝑤.(𝑘)∗, where 𝑤.(𝑘) is the least upper bound of 𝑡 .(𝑖)
and 𝑢.(𝑗) for ⪯, if it exists. The least upper bound can be computed as the first common element
in the two chains of successive weakenings starting from 𝑡 .(𝑖) and 𝑢.(𝑗). If there is no such upper
bound, then 𝑡1 ∨𝕋 𝑡2 = word𝒲.

• If 𝑡2 = {𝑥 ∶ 𝑡1 | 𝑝(𝑥)} then 𝑡1 ∨𝕋 𝑡2 = 𝑡1. Symmetrically, if 𝑡1 = {𝑥 ∶ 𝑡2 | 𝑝(𝑥)}, then 𝑡1 ∨𝕋 𝑡2 = 𝑡2.
• Otherwise, if size(𝑡1) = size(𝑡2), then 𝑡1 ∨𝕋 𝑡2 = wordsize(𝑡1). The join of 𝑡1 and 𝑡2 is undefined if
they are of different sizes.

Implementation-wise, a simple algorithm is to generate the two chains of weakenings of 𝑡1 and 𝑡2 and
compare the chains starting from the the greatest elements (in the sense of ⪯). If there is no common
element, then the join is word𝒲. Otherwise, we just iterate until the last common element is found:
this element is the least upper bound. This algorithm is linear in the height of the abstract syntax trees
(ASTs) (in the sense of the type grammar of Definition 4.1) of its operands; and it does not seem to cause
performance problems in practice (see Section 7.3).

Definition 5.7 (Abstract join in 𝕋 ♯ × 𝔻num). Let 𝕥1, 𝕥2 ∈ 𝕋 ♯ and 𝓋♯1,𝓋♯2 ∈ 𝔻num. The operator ⊔T ⊆
(𝕋 ♯ × 𝔻num) × (𝕋 ♯ × 𝔻num) ⇀ 𝕋 ♯ is defined as follows:

• If 𝕥1 = 𝑡.(𝕚)∗ and 𝕥2 = 𝑡.(𝕚′)∗ for some 𝑡 ∈ 𝕋 , and there exists some 𝑖 ∈ ℕ such that 𝓋♯1 ⊨ 𝕚 = 𝑖 and
𝓋♯2 ⊨ 𝕚′ = 𝑖, then

(𝕥1,𝓋♯1) ⊔T (𝕥2,𝓋♯2) = 𝑡.(𝑖)∗

5.2. Abstract physical types 55

node[10].(𝕚)∗ ⊔T node[10].(𝕚′)∗ = node[10].(54)∗
𝕚 = 54 𝕚′ = 54

node[10].(𝕚)∗ ⊔T node[10].(𝕚′)∗ = word𝒲
𝕚 = 54 𝕚′ ∈ [0, 160[

𝕚′ ≡ 6 (mod 16)

node[10].(𝕚)∗ ⊔T (dll × word8).(2)∗ = dll.(2)∗
𝕚 ∈ [0, 160[
𝕚 ≡ 6 (mod 16)

Figure 5.4: Examples of abstract type joins.

• If 𝕥1 = 𝑡[𝕤].(𝕚) and 𝕥2 = 𝑡[𝕤].(𝕛), for some 𝑡 ∈ 𝕋 , and 𝕤 𝓋♯1=𝓋♯2 𝕤′ and there exists some 𝑖 ∈ ℕ such
that 𝓋♯1 ⊨ 𝕚 = 𝑖 and 𝓋♯2 ⊨ 𝕛 = 𝑖,then

(𝕥1,𝓋♯1) ⊔T (𝕥2,𝓋♯2) = 𝑡[𝕤].(𝑖)∗
• In all other cases, the join is equal to the concrete join of conc𝓋♯1(𝕥1) and conc𝓋♯2(𝕥2), if it exists:

(𝕥1,𝓋♯1) ⊔T (𝕥2,𝓋♯2) = conc𝓋♯1(𝕥1) ∨𝕋 conc𝓋♯2(𝕥2)

If it does not exist, then (𝕥1,𝓋♯1) ⊔T (𝕥2,𝓋♯2) is undefined.

Note that cases where the result of ⊔T is undefined occur when joining types of different sizes. This
will not happen in static analysis of C or machine code, as it could only happen if different execution
paths store values of different lengths in the same lvalue (or in the same register or memory region, in
the case of machine code), which is not permitted by the typing of C, nor by the semantics of machine
code.

Note that ⊔T computes upper bounds in the sense of value subtyping⪯𝕋 , not in the sense of concrete
set inclusion.

Example 5.3. Figure 5.4 shows three examples of abstract joins. In the second example, the first type
𝕥1 = node[10].(𝕚) represents a single concrete type, namely 𝑡1 = node[10].(54), which is also in the
concretization of 𝕥2 = node[10].(𝕚′). However, it would be incorrect to have 𝕥2 be the result of the join,
because it also represents some types that are not supertypes of 𝑡1, such as node[10].(0).

Theorem 5.3 (Soundness of ⊔T). Given 𝕥1, 𝕥2 ∈ 𝕋 ♯, 𝓋♯1,𝓋♯2 ∈ 𝔻num, for all (𝑡1,𝓋1) ∈ γT,num(𝕥1,𝓋♯1) and
(𝑡2,𝓋2) ∈ γT,num(𝕥2,𝓋♯2) such that 𝑡∨ = (𝕥1,𝓋♯1) ⊔T (𝕥2,𝓋♯2) is defined:

𝑡1 ⪯𝕋 𝑡∨ and 𝑡2 ⪯𝕋 𝑡∨
Proof. Similar to the proof of Theorem 5.2.

56 CHAPTER 5. Type-based shape abstract domain

5.3 State abstraction

5.3.1 Type-based shape domain

The type-based shape domain ℍ describes each variable with an abstract type. In order to also express
non-type related constraints over the contents of variables, this abstraction also needs to attach to each
variable a symbolic variable denoting its value.

The elements of ℍ are (σ♯, Γ♯) pairs, where σ♯ ∈ 𝕏 → 𝕍 ♯ is a mapping from variables to symbolic
values, and Γ♯ ∈ 𝕏 → 𝕋 ♯ is a mapping from variables to abstract types; we call such pairs abstract
stores. The concrete states represented by an abstract store (σ♯, Γ♯) are the well-typed states of the form
(σ, Γ, ℎ,ℒ) in which σ is abstracted by σ♯ and Γ is abstracted by Γ♯.

γH ∶ ℍ → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))

γH(σ♯, Γ♯) = {((σ, Γ, ℎ,ℒ), 𝓋) |
(σ, Γ, ℎ,ℒ) is well typed under 𝓋
and ∀𝑥 ∈ 𝕏, ∀(𝑡,𝓋′) ∈ γT(Γ♯(𝑥)), Γ(𝑥) ⪯𝕋 𝑡
and ∀𝑥 ∈ 𝕏, σ(𝑥) = 𝓋(σ♯(𝑥))

}

Note that there is no explicit representation of the heap in elements of ℍ; however, possible concrete
heaps are constrained by the requirement that the state must be well typed.

This definition does not provide an abstraction suitable for analysis yet; we still need to reason over
the possible numerical values denoted by symbolic variables.

5.3.2 Combined shape-numeric abstraction

The abstraction is enriched with numeric constraints on values by using a product of the shape domain
with a numeric domain 𝔻num that has a concretization γnum ∶ 𝔻num → 𝒫(𝕍 ♯ → 𝕍).
Definition 5.8 (Shape-numeric abstract domain). Given a numeric domain 𝔻num, the combined shape-
numeric abstract domain is:

𝕊♯ def= ℍ × 𝔻num

Its concretization is

γS ∶ 𝕊♯ → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))
γS(ℎ♯,𝓋♯) = {(𝑠,𝓋) ∈ γS(ℎ♯) | 𝓋 ∈ γnum(𝓋♯)}

Example 5.4. Consider the type node from our running example. Suppose that there are only two
variables in the language: 𝕏 = {𝑥, 𝑦}. A possible abstract state 𝕤 ∈ 𝕊♯ is the following:

𝕤 = (([𝑥 ↦ 𝕧0, 𝑦 ↦ 𝕧1], [𝑥 ↦ node.(0), 𝑦 ↦ node.(0)]),𝓋♯)
where 𝓋♯ expresses the numerical predicates 𝕧0 ≠ 0 and 𝕧1 ≠ 0:

γnum(𝓋♯) = {𝓋 ∈ 𝕍 ♯ → 𝕍 | 𝓋(𝕧0) ≠ 0 ∧ 𝓋(𝕧1) ≠ 0}
This abstract state can be represented graphically as follows:

𝕧0 ∶ node.(0)∗𝑥

𝕧1 ∶ node.(0)∗𝑦
𝕧0 ≠ 0
𝕧1 ≠ 0

5.4. Abstract semantics 57

5.4 Abstract semantics

For the combined shape-numeric abstract domain, abstract values are pairs of a symbolic value and a
type: 𝕍S = 𝕍 ♯ × 𝕋 ♯.

The transfer functions of 𝕊♯ are inmanyways similar to the typed semantics presented in Section 4.3.
However, since the heap is represented only indirectly —through types—, memory reads and writes are
also handled through types:

• The result of a memory read is abstracted by an unknown value and the type of the region read; if
the types in that region are constrainedwith predicates, the value is refined using those predicates.

• The result of a memory write is abstracted by the identity, so long as the write operation is well
typed; if it is ill-typed, the analysis emits an alarm1.

To perform these two operations, the analysis must be able, first, to produce a value of a given type, and
second, to decide whether a value is consistent with a type.

We call abstract type checking the operation of verifying that a value is consistent with a given type:

Definition 5.9 (Abstract type checking). For 𝕥, 𝕦 ∈ 𝕋 ♯ and 𝓋♯ ∈ 𝔻num, we denote

𝕧 ∶ 𝕥 𝓋♯
↪−−→ 𝕦

the fact that value 𝕧 , of type 𝕥, can be safely cast into type 𝕦. The rules for abstract type checking are
given in Figure 5.5.

The rule SubVal expresses the possibility of upcasting, i.e., of turning a type into its supertype. On the
contrary, Refine enables downcasting: the type of a value may be refined with a predicates that holds
on the value. The rule NullPtr expresses that the value zero can be safely cast into any pointer type.
Finally, the three rules MakeNamed, MakeProd, MakeArray enable to inductively check named or
compound types.

Example 5.5 (Upcasting a pointer). Following Definition 5.5, given some 𝓋♯ ∈ 𝔻num, the subtyping
relation (int[10].(𝕚)∗,𝓋♯) ⊑T (int.(0)∗,𝓋♯) holds when the numerical constraints 𝕚 ∈ [0, 39] ∧ ∃𝑘 ∈
ℕ, 𝕚 = 4𝑘 hold. In that case, int[10].(𝕚)∗ can be safely cast into an int.(0)∗, which we denote, for any
𝕧 ∈ 𝕍 ♯:

𝕧 ∶ int[10].(𝕚)∗ 𝓋♯
↪−−→ int.(0)∗.

Note that querying the numerical domain is necessary to check the safety of this cast.

Example 5.6 (Downcasting to a non-null pointer). Consider again the types from Figure 4.2b:

ℳ ∶ node_kind ↦ {𝑥 ∶ word4 | 𝑥 ≤ 5}
uf ↦ uf.(0)∗
dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}
node ↦ node_kind × dll × uf

Given a value 𝕧 of type node.(4)∗, it can be cast into a dll.(0)∗ by rule SubVal. In addition, if the value
is non-zero, i.e., if 𝓋♯ ⊨ 𝕧 ≠ 0, it can be downcast into a non-null pointer type by the Refine rule:

𝕧 ∶ node.(4)∗ 𝓋♯
↪−−→ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}

1As is usual in static analysis, the emission of an alarm signals that the analysis results after this point are only correct on
traces where the error did not occur.

58 CHAPTER 5. Type-based shape abstract domain

(𝕥,𝓋♯) ⊑T (𝕦,𝓋♯)

𝕧 ∶ 𝕥 𝓋♯
↪−−→ 𝕦

SubVal
𝓋♯ ⊨ 𝑝(𝕧)

𝕧 ∶ 𝕥 𝓋♯
↪−−→ {𝑥 ∶ 𝕥 | 𝑝(𝑥)}

Refine
𝓋♯ ⊨ 𝕧 = 0 𝑢 ∈ 𝕋

𝕧 ∶ 𝕥 𝓋♯
↪−−→ 𝑢.(0)∗

NullPtr

𝕧 ∶ ℳ(n) 𝓋♯
↪−−→ n

MakeNamed
𝕧1 ∶ 𝕥1

𝓋♯
↪−−→ 𝕥𝑎 𝕧2 ∶ 𝕥2

𝓋♯
↪−−→ 𝕥𝑏

𝕧3 ∶ 𝕥3
𝓋♯[𝕧3=𝕧1∶∶𝕧2]
↪−−−−−−−−−−−→ 𝕥𝑎 × 𝕥𝑏

MakeProd

𝕧1 ∶ 𝕥1
𝓋♯
↪−−→ 𝕥 𝕧2 ∶ 𝕥2

𝓋♯
↪−−→ 𝕥 ⋯ 𝕧𝑛 ∶ 𝕥𝑛

𝓋♯
↪−−→ 𝕥

𝕧′ ∶ 𝕥′
𝓋♯[𝕧′=𝕧1∶∶⋯∶∶𝕧𝑛]
↪−−−−−−−−−−−−−−→ 𝕥[𝑛]

MakeArray

Figure 5.5: Type casting rules.

Example 5.7 (Obtaining a named type from an unnamed one). A value of type {𝑥 ∶ word4 | 𝑥 ≤ 5} can
be attributed type node_kind through rule MakeNamed.

Abstract type checking is sound in the sense that in the context of an abstract state, if abstract
type checking succeeds then all concrete values in the interpretation of the initial type are also in the
interpretation of the final type:

Theorem 5.4 (Soundness of abstract type checking). Let 𝕤 = (ℎ♯,𝓋♯) ∈ 𝕊♯, 𝕧 ∈ 𝕍 ♯ and 𝕥, 𝕦 ∈ 𝕋 ♯. If

𝕧 ∶ 𝕥 𝓋♯
↪−−→ 𝕦, then for all ((σ, Γ, ℎ,ℒ), 𝓋) ∈ γS(𝕤), for all 𝑡, 𝑢 ∈ 𝕋 such that (𝑡,𝓋) ∈ γT(𝕥) ∧ (𝑢,𝓋) ∈ γT(𝕦):

𝓋(𝕧) ∈ ⦇ 𝑡 ⦈ℒ,𝓋 ⟹ 𝓋(𝕧) ∈ ⦇ 𝑢 ⦈ℒ,𝓋

Proof. By induction on the syntax tree of type 𝑢, using the definition of the interpretation (Defini-
tion 4.8), and the soundness of abstract subtyping (Theorem 5.2).

5.4.1 Abstract semantics of expressions

Figure 5.6, page 60 summarizes the rules for abstract semantics of expressions in 𝕊♯. We proceed below
to precisions and clarifications. Intuitively, this semantics simultaneously performs typing and over-
approximates the possible numerical values in the program.

Constants Constant expressions are given the type ⊤ (rule Const♯).

Variables A variable is evaluated using the abstract value store and the abstract type store (rule Env♯).

Abstract addition and subtraction Abstract addition and subtraction follow rules similar to the ex-
pression typing rules given in the typed semantics, albeit on abstract types. If one of the operands of an
addition is a pointer—possibly refined with a predicate—, and the other operand is such that the result-
ing offset is not out of bounds, then the addition is considered pointer arithmetic and the resulting type
is a pointer with the new offset. The resulting value is assumed non-zero (assumption 𝕧3 ≠ 0 in the rule
conclusion), due to the property that well-typed pointer arithmetic cannot result in a null pointer.

5.4. Abstract semantics 59

Pointer arithmetic can also be performed using the subtraction operation (rule SubR♯), but the
pointer can only be the right operand.

Note that subtraction is also sometimes used on two pointers into the same block in order to compute
an offset. This abstract domain cannot compute the result of such operations precisely in general, as
two pointers can have the same type and still point to different memory regions. In our analysis, the
user can mark a type as covering only a single memory region, in which case the difference between
two pointers to this type is computed as the difference between the pointers’ offsets. For example, the
type Task[𝕟] in the kernel types of Figure 9.1, p. 123, could be marked thus (there is only one array of
tasks).

For both additions and subtractions, when the premises of rules AddR♯, AddL♯ or SubR♯ do not
hold, then the Binop♯ rule applies.

Other arithmetic and comparison operators. All other operators use the abstract functions of the
numerical domain and return a result of type ⊤, regardless of the types of their operands (rule Binop♯).

Memory reads The result of a memory read is based on the type of the address read. If the address
type is a pointer type, then the type of the pointed region is determined by the “deref” function. The
“deref” function takes an abstract type and a size ℓ and, if applicable, returns the abstract type of the
pointed region of size ℓ.
Definition 5.10 (“deref” function). Given 𝓋♯ ∈ 𝔻num, the type dereferencing operator deref𝓋♯ ∶ 𝕋 ♯ ×ℕ ⇀
𝕋 is the partial function defined inductively as follows:

deref𝓋♯(𝑡.(0)∗, ℓ) = 𝑡 if size(𝑡) = ℓ
deref𝓋♯(𝑡.(𝑖)∗, ℓ) = deref𝓋♯(𝑤(𝑡.(𝑖))∗) if 𝑖 ∈ ℕ

deref𝓋♯(𝑡[𝕤].(𝕚)∗, ℓ) = deref𝓋♯(𝑢, ℓ) where 𝑢 = conc𝓋♯(𝑡[𝕤].(𝕚)∗), if 𝑢 ≠ word𝒲
deref𝓋♯(𝑡[𝕤].(𝕚)∗, ℓ) is undefined otherwise

deref𝓋♯(𝑡.(𝕚)∗, ℓ) = deref𝓋♯(𝑢, ℓ) where 𝑢 = conc𝓋♯(𝑡.(𝕚)∗), if 𝑢 ≠ word𝒲
deref𝓋♯(𝑡.(𝕚)∗, ℓ) is undefined otherwise

deref𝓋♯(n, ℓ) = deref𝓋♯(ℳ(n), ℓ)
deref𝓋♯({𝑥 ∶ 𝑡 | 𝑝(𝑥)}, ℓ) = deref𝓋♯(𝑡, ℓ)

deref𝓋♯(word𝑛, ℓ) is undefined
deref𝓋♯(𝑡1 × 𝑡2, ℓ) is undefined
deref𝓋♯(𝑡[𝑛], ℓ) is undefined

The result of reading a value of length ℓ in memory at address 𝕒 of type 𝕦 (rule Load♯) is determined
as follows. If the read is well typed, i.e., if deref𝓋♯(𝕦, ℓ) is defined, and the address is not null, i.e.,
𝓋♯ ⊨ 𝕒 ≠ 0, then the analysis creates a fresh symbolic variable 𝕧 . This value is returned with type 𝕥, the
type of the region read. In addition, 𝕧 is refined with the predicates present in type 𝕥. This is expressed
in the rule using abstract type checking: the result value 𝕧 can safely be cast from the generic type wordℓ
to the type 𝑡 :

𝕧 ∶ wordℓ
𝓋♯1
↪−−→ 𝕥

Error cases When evaluating an expression, if none of the rules of Figure 5.6 applies, then the result
of the expression evaluation is a completely unknown value and an unknown state: the analysis loses
all precision. This may happen when applying a binary operator to two bit vectors of different sizes,

60 CHAPTER 5. Type-based shape abstract domain

𝑐 ∈ 𝕍𝑛 𝕤 = ((σ♯, Γ♯),𝓋♯) 𝕧 fresh

ℰJ𝑐K♯S𝕤 = ((𝕧, word𝑛), ((σ♯, Γ♯), 𝓋♯[𝕧 = 𝑐]))
Const♯

𝕤 = ((σ♯, Γ♯),𝓋♯)
ℰJ𝑥K♯S𝕤 = ((σ♯(𝑥), Γ♯(𝑥)), 𝕤)

Env♯

ℰJ𝑒1K♯S𝕤 = ((𝕧1, {𝑥 ∶ 𝑢.(𝕚)∗ | 𝑝(𝑥)}), 𝕤1)
ℰJ𝑒2K♯S𝕤1 = ((𝕧2, 𝕥2), ((σ♯2, Γ♯2),𝓋♯2)) 𝓋♯2 ⊨ 𝕧1 ≠ 0 ∧ 0 ≤ 𝕚 + 𝕧2 < size𝓋♯(𝑢) 𝕧3, 𝕛 fresh

ℰJ𝑒1 + 𝑒2K♯S𝕤 = ((𝕧3, 𝑢.(𝕛)∗), ((σ♯2, Γ♯2),𝓋♯2[𝕧3 = 𝕧1 + 𝕧2
∧ 𝕧3 ≠ 0 ∧ 𝕛 = 𝕚 + 𝕧2

]))
AddR♯

ℰJ𝑒2K♯S𝕤1 = ((𝕧2, {𝑥 ∶ 𝑢.(𝕚)∗ | 𝑝(𝑥)}), ((σ♯2, Γ♯2),𝓋♯2))
ℰJ𝑒1K♯S𝕤 = ((𝕧1, 𝕥1), 𝕤1) 𝓋♯2 ⊨ 𝕧2 ≠ 0 ∧ 0 ≤ 𝕚 + 𝕧1 < size𝓋♯(𝑢) 𝕧3, 𝕛 fresh

ℰJ𝑒1 + 𝑒2K♯S𝕤 = ((𝕧3, 𝑢.(𝕛)∗), ((σ♯2, Γ♯2),𝓋♯2[𝕧3 = 𝕧1 + 𝕧2
∧ 𝕧3 ≠ 0 ∧ 𝕛 = 𝕚 + 𝕧1

]))
AddL♯

ℰJ𝑒1K♯S𝕤 = ((𝕧1, {𝑥 ∶ 𝑢.(𝕚)∗ | 𝑝(𝑥)}), 𝕤1)
ℰJ𝑒2K♯S𝕤1 = ((𝕧2, 𝕥2), ((σ♯2, Γ♯2),𝓋♯2)) 𝓋♯2 ⊨ 𝕧1 ≠ 0 ∧ 0 ≤ 𝕚 − 𝕧2 < size𝓋♯(𝑢) 𝕧3, 𝕛 fresh

ℰJ𝑒1 − 𝑒2K♯S𝕤 = ((𝕧3, 𝑢.(𝕛)∗), ((σ♯2, Γ♯2),𝓋♯2[𝕧3 = 𝕧1 − 𝕧2
∧ 𝕧3 ≠ 0 ∧ 𝕛 = 𝕚 − 𝕧2

]))
SubR♯

⋄ ∈ {+,−, ×, /,⋯}
ℰJ𝑒1K♯S𝕤 = ((𝕧1, 𝕥1), 𝕤1) ℰJ𝑒2K♯S𝕤1 = ((𝕧2, 𝕥2), ((σ♯2, Γ♯2),𝓋♯2)) size(𝕥1) = size(𝕥2) 𝕧3 fresh

ℰJ𝑒1 ⋄ 𝑒2K♯S𝕤 = ((𝕧3, wordsize(𝕥1)), ((σ♯2, Γ♯2),𝓋♯2[𝕧3 = 𝕧1 ⋄ 𝕧2]))
Binop♯

ℰJ𝑒K♯S𝕤 = ((𝕒, 𝕦), ((σ♯1, Γ♯1),𝓋♯1)) deref𝓋♯1(𝕦, ℓ) = 𝕥 𝓋♯1 ⊨ 𝕒 ≠ 0 𝕧 ∶ wordℓ
𝓋♯1
↪−−→ 𝕥 𝕧 fresh

ℰJ∗ℓ𝑒K♯S𝕤 = ((𝕧, 𝕥), ((σ♯1, Γ♯1),𝓋♯1))
Load♯

Figure 5.6: Abstract semantics of expressions in 𝕊♯.

or when the well-typedness of a load cannot be ensured. In a practical implementation of the analysis,
this will be reported as an alarm with information to help understand the origin of the alarm (such as
location and state information) and the analysis will carry on assuming the error was a false alarm.
This way, if the user can verify by other means that it was indeed a false alarm, the analysis still delivers
useful results.

5.4.2 Soundness of expression semantics

The numerical component of the result of abstract expression evaluation is sound with respect to the
concrete semantics. As for the type component, although it does not cover all possible types computed
by concrete expression typing, it corresponds to a subset of those.

Theorem 5.5 (Soundness of abstract expression evaluation). Let 𝕤 ∈ 𝕊♯ and 𝑒 ∈ expr. Let ((𝕧, 𝕥), 𝕤′) =
ℰJ𝑒K♯S𝕤. For all ((σ, Γ, ℎ,ℒ),𝓋) ∈ γS(𝕤), if (σ, Γ, ℎ,ℒ) is well typed under 𝓋, then:

1. Expression evaluation does not modify the concrete state, therefore all states abstracted by 𝕤 are also

5.4. Abstract semantics 61

abstracted by 𝕤′:
∀(𝑠,𝓋) ∈ γS(𝕤), ∃𝓋′ ∶ 𝕍 ♯ → 𝕍 , (𝑠,𝓋′) ∈ γS(𝕤′)

2. The numerical component of the result is sound:

{ℰJ𝑒K(σ, ℎ) | ((σ, Γ, ℎ,ℒ), 𝓋) ∈ γS(𝕤)} ⊆ {𝓋(𝕧) | ∃𝑠 ∈ 𝕊𝑡 , (𝑠,𝓋) ∈ γS(𝕤)}

3. The concrete types abstracted by 𝕥 are possible types for 𝑒 (but not all types):

γT(𝕥) ⊆ {(𝑡,𝓋) | ∀𝑠 ∈ 𝕊𝑡 , (𝑠,𝓋) ∈ γS(𝕤) ⟹ 𝑠 ⊢𝓋 𝑒 ∶ 𝑡}

Proof. By induction on expression syntax. Each rule of abstract expression evaluation is similar to one
of the rules in concrete expression typing (Figure 4.4), so it can be shown that each rule yields a similar
type judgment. Soundness of the numerical component is straightforward from the definitions and the
fact that the initial state is well typed.

We see here that the abstract expression semantics is sound with regard to the untyped seman-
tics ℰJ⋅K (defined on p. 22), but not to the typed semantics J⋅K𝑡 (defined on p. 43), although the type
component enjoys a form of completeness with regard to the typed semantics.

Indeed, the typed semantics non-deterministically computes all possible types of an expression. In
contrast, the abstract semantics ℰJ⋅K♯S only computes some of the possible types, and uses the typing
invariants to maintain both soundness and a certain level of precision.

Example 5.8. Consider the abstract state 𝕤 = ((σ♯, Γ♯),𝓋♯) from Example 5.4. Evaluating the expression
∗4𝑥 in 𝕤 results in the following (value, state) pair:

((𝕧2, node_kind), ((σ♯, Γ♯),𝓋♯[𝕧2 ≤ 5]))
by application of the Load♯ rule. There is only one derived type. By contrast, in the typed semantics
the same expression would be attributed an infinity of types. These types would include node_kind,
but also {𝑥 ∶ node_kind | 𝑥 ≤ 5}, {𝑥 ∶ node_kind | 𝑥 ≤ 5 ∧ 𝑥 ≠ 42}, word4, {𝑥 ∶ word4 | 𝑥 ≤ 5}, etc. by
applications of rules Refine and SubVal.

5.4.3 Abstract semantics of statements

Transfer functions for atomic statements

There is one rule for each type of atomic statement, gathered in Figure 5.7. Rules for compound state-
ments are generic and given in Section 3.4. Each rule specifies the semantics of one kind of statement
under a number of premises. As with expression evaluation, when none of the rules applies, the analysis
returns an entirely unknown state (or more practically, emits an alarm).

Assignment The result of an assignment is computed (rule Assign♯) by evaluating the expression
into a symbolic variable and a type, and updating the abstract value store and the abstract type store
accordingly.

Memory write The result of evaluating the statement ∗ℓ𝑒1 ∶= 𝑒2 is determined as follows. First 𝑒1 is
evaluated into (𝕒, 𝕥𝑎) and 𝑒2 into (𝕧, 𝕥𝑣). If the destination address is not null, and the address type can

62 CHAPTER 5. Type-based shape abstract domain

ℰJ𝑒K♯S𝕤 = ((𝕧, 𝕥), ((σ♯1, Γ♯1), 𝓋♯1))J𝑥 ∶= 𝑒K♯S𝕤 = ((σ♯1[𝑥 ← 𝕧], Γ♯1[𝑥 ← 𝕥]), 𝓋♯1)
Assign♯

ℰJ𝑒1K♯S𝕤 = ((𝕒, 𝕥𝑎), 𝕤1)
ℰJ𝑒2K♯S𝕤1 = ((𝕧, 𝕥𝑣), ((σ♯2, Γ♯2),𝓋♯2)) deref𝓋♯2(𝕥𝑎, ℓ) = 𝕥 𝓋♯2 ⊨ 𝕒 ≠ 0 𝕧 ∶ 𝕥𝑣

𝓋♯2
↪−−→ 𝕥

J∗ℓ𝑒1 ∶= 𝑒2K♯S𝕤 = ((σ♯2, Γ♯2),𝓋♯2)
Store♯

ℰJ𝑒K♯S𝕤 = ((𝕧ℓ, 𝕥ℓ), ((σ♯1, Γ♯1), 𝓋♯1)) 𝓋♯1 ⊨ 𝕧ℓ = size(𝑡) 𝕒, 𝕧 fresh 𝕧 ∶ wordsize(𝑡)
𝓋♯1
↪−−→ 𝑡

J𝑥 ∶= malloc𝑡 (𝑒)K♯S𝕤 = ((σ♯1[𝑥 ← 𝕒], Γ♯1[𝑥 ← 𝑡.(0)∗]), 𝓋♯1)
Malloc♯

Figure 5.7: Abstract semantics of simple statements in 𝕊♯.

be dereferenced (i.e. deref𝓋♯2(𝕥𝑎, ℓ) is defined), then the analysis checks that the typed value written can
be safely converted into a 𝕥, i.e., it checks that:

𝕧 ∶ 𝕥𝑣
𝓋♯2
↪−−→ 𝕥

If that is the case, then the memory write preserves the heap typing, and the abstract state is returned
unmodified. (Recall that our abstract domain does not represent any constraints on the heap, other than
the fact that it is well typed.)

Memory allocation We give the possibility to the user of the analysis to provide an expected type for
the allocated region, as a hint to the static analysis. This is not part of the While-memory syntax, nor
of its concrete semantics; but in the abstract operator for malloc we denote the presence of such a hint
with a subscript type: J𝑥 ∶= malloc𝑡 (𝑒)K♯, where 𝑡 ∈ 𝕋 . To compute the effect of 𝑥 ∶= malloc𝑡 (𝑒), the
analysis simply assigns a fresh, unconstrained symbolic variable 𝕒 to 𝑥 , and gives it the type 𝑡 .(0)∗. In
addition, it checks that the type hint 𝑡 can be soundly used in this way: it creates a fresh, unconstrained
symbolic variable 𝕧 , to account for the unknown contents of the newly allocated region, and performs
the abstract type checking:

𝕧 ∶ wordsize(𝑡)
𝓋♯1
↪−−→ 𝑡

This boils down to asking the question: “Can this unknown memory region be given type 𝑡 without
violating typing?” If the answer is no, then this is an error case and the analysis emits an alarm: the
type hint cannot be used in a sound way.

Example 5.9 (Imprecision of memory allocation in 𝕊♯). The transfer function for memory allocation
may induce a significant loss of precision on a common code pattern, namely initialization of allocated
objects, resulting in the failure to verify many programs. Consider for example the following program,

5.4. Abstract semantics 63

𝑥 𝕧0 ∶ node[10].(𝕚)∗

𝑦 𝕧1 ∶ word8

𝕧0 ≠ 0
𝕧1 > 5
𝕚 ∈ [32, 160[
𝕚 ≡ 6 (mod 16)

⊑
𝑥 𝕧′

0 ∶ dll.(2)

𝑦 𝕧′
1 ∶ word8

𝕧′
0 ≠ 0

𝕧′
1 ≠ 0

Figure 5.8: Example of abstract inclusion between two abstract states. A valid renaming function is Φ
such that Φ(𝕧′

0) = 𝕧0, Φ(𝕧′
1) = 𝕧1 and Φ is the identity everywhere else.

that allocates and initializes a region of type dll:

𝑛 ∶= mallocdll(8);
∗4𝑛 ∶= 𝑛;
∗4(𝑛 + 4) ∶= 𝑛

This program is reasonable: it allocates a doubly-linked list node, and initializes its next and prev fields
to point to itself.

However, the analysis using the abstract domain 𝕊♯ will emit an alarm on the first line, because it
would be unsound to give the type dll to a region with unknown contents. If we remove the type hint
(or, equivalently, replace it with word8), then no alarm is emitted, but the information that 𝑛 points to a
region of type dll is lost.

This example illustrates the fact that sometimes, precision can be gained by delaying the type-related
checks. Our staged predicate domain (Chapter 6) will exploit this intuition to gain precision.

Transfer function for conditionals

The function guardS ∶ 𝕍S × 𝕊♯ → 𝕊♯ ignores the type of its operand, and simply adds to the numerical
abstract state the constraint that the symbolic variable in its argument should be non-zero:

guardS((𝕧, 𝕥), ((σ♯, Γ♯),𝓋♯)) = ((σ♯, Γ♯),𝓋♯[𝕧 ≠ 0])

Abstract inclusion and join

Abstract inclusion and abstract join are computed point-wise, based on the abstract type join and the
join of the numerical domain.

Definition 5.11 (Valid variable renamings in 𝕊♯). Φ ∶ 𝕍 ♯ → 𝕍 ♯ is a renaming from the variables of
𝕤2 = ((σ♯2, Γ♯2), 𝓋♯2) to the variables of 𝕤1 = ((σ♯1, Γ♯1), 𝓋♯1) if:

∀𝑥 ∈ 𝕏,Φ(σ♯2(𝑥)) = σ♯1(𝑥)
Note that from this definition, it is easy to deduce an algorithm to construct a renaming.

Definition 5.12 (Abstract inclusion in𝕊♯, with renaming). Let 𝕤1 = ((σ♯1, Γ♯1), 𝓋♯1) and 𝕤2 = ((σ♯2, Γ♯2), 𝓋♯2)
be two elements of 𝕊♯. Then 𝕤1 ⊑S,Φ 𝕤2 holds if and only if:

𝓋♯1 ⊑num,Φ 𝓋♯2

and

∀𝑥 ∈ 𝕏, (Γ♯1(𝑥),𝓋♯1) ⊑T (Γ♯2(𝑥),𝓋♯2).

64 CHAPTER 5. Type-based shape abstract domain

𝑥 𝕧0 ∶ node[10].(𝕚)∗

𝑦 𝕧1 ∶ word8

𝕧0 ≠ 0
𝕧1 ≠ 0
𝕚 ∈ [32, 160[
𝕚 ≡ 6 (mod 16)

⊔
𝑥 𝕧′

0 ∶ dll.(2)

𝑦 𝕧′
1 ∶ word8

𝕧′
0 ≠ 0

𝕧′
1 > 5

⇓
𝑥 𝕧″

0 ∶ dll.(2)

𝑦 𝕧″
1 ∶ word8

𝕧″
0 ≠ 0

𝕧″
1 ≠ 0

Figure 5.9: Example of join between two abstract states. A possible valid two-way renaming is Ψ =
{(𝕧0, 𝕧′

0, 𝕧″
0), (𝕧1, 𝕧′

1, 𝕧″
1)}.

Definition 5.13 (Abstract inclusion in 𝕊♯). For any two abstract states 𝕤1, 𝕤2 ∈ 𝕊♯, the relation 𝕤1 ⊑S 𝕤2
holds if and only if there exists Φ a renaming from the variables of 𝕤2 to the variables of 𝕤1 such that
𝕤1 ⊑S,Φ 𝕤2.

Example 5.10. Figure 5.8 shows an example of an abstract state included in another, along with a valid
renaming that enables to verify it.

Note that instead of using the abstract subtyping operator ⊑T, we could have used abstract type check-
ing, which is more precise. Indeed, abstract type checking uses abstract subtyping, but is also able to
inspect compound types, and to perform downcasts. In our experiments (Section 7.3 and Chapter 10),
we found that the precision given by abstract subtyping was sufficient for our purposes. It could be
useful to implement abstract inclusion using abstract type checking and evaluate the precision gains
against the performance cost. In any case, abstract type checking cannot be used to construct the join
operation.

Definition 5.14 (Construction of a two-way variable renaming in 𝕊♯). Ψ ⊆ (𝕍 ♯)3 is a valid two-way
renaming between 𝕤1 and 𝕤2 if for all 𝑥 ∈ 𝕏 there exists 𝕧𝑥 ∈ 𝕍 ♯ such that:

Ψ ⊆ ⋃
𝑥∈𝕏

(σ♯1(𝑥),σ♯2(𝑥), 𝕧𝑥)

where for all 𝑥 ∈ 𝕏, 𝕧𝑥 is does not appear in 𝕤1 and 𝕤2, and does not appear elsewhere in Ψ.

Definition 5.15 (Abstract join in 𝕊♯). Let 𝕤1 = ((σ♯1, Γ♯1), 𝓋♯1) and 𝕤2 = ((σ♯2, Γ♯2), 𝓋♯2) be two elements

of 𝕊♯. Let Ψ ⊆ (𝕍 ♯)3 be a valid two-way renaming between 𝕤1 and 𝕤2. The join 𝕤1 ⊔S,Ψ 𝕤2 is defined as
𝕤3 = ((σ♯3, Γ♯3), 𝓋♯3), where:

• σ♯3 is such that:
∀𝑥 ∈ 𝕏, (σ♯1(𝑥),σ♯2(𝑥),σ♯3(𝑥)) ∈ Ψ

• Γ♯3 is such that:
∀𝑥 ∈ 𝕏, Γ♯3(𝑥) = (Γ♯1(𝑥),𝓋♯1) ⊔T (Γ♯2(𝑥),𝓋♯2)

• The numerical abstract state 𝓋♯3 is the result of using the join operator from the numerical domain:

𝓋♯3 = 𝓋♯1 ⊔num,Ψ 𝓋♯2.

5.4. Abstract semantics 65

𝕊♯ 𝕊♯

𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍)) 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))

𝒫(𝕊) 𝒫(𝕊)

JPK♯S
γS

untyp

γS

untyp

JPK

JPK𝑡

Figure 5.10: Graphical representation of semantics and concretizations.

Example 5.11. Figure 5.9 shows an example of joining two abstract states, along with the associated
renaming.

Theorem 5.6 (Soundness of ⊔S,Ψ). Given 𝕤1, 𝕤2 ∈ 𝕊♯ and Ψ a two-way renaming between 𝕤1 and 𝕤2, if
𝕤3 = 𝕤1 ⊔S,Ψ 𝕤2, then:

∀(𝑠1,𝓋1) ∈ γS(𝕤1), (𝑠1, 𝓋1 ∘ Φ1) ∈ γS(𝕤3)
∀(𝑠2,𝓋2) ∈ γS(𝕤2), (𝑠2, 𝓋2 ∘ Φ2) ∈ γS(𝕤3)

where Φ1 and Φ2 are defined by:

(Φ1(𝕧″),Φ2(𝕧″)) = (𝕧, 𝕧′) ⟺ (𝕧, 𝕧′, 𝕧″) ∈ Ψ

Widening

The abstract join on types ⊔T,Ψ is also a widening operator, in the sense that it does not induce infinite
increasing chains (Definition 3.16). This is due to the fact that the weakening chain of an address type
(Definition 4.3) is always finite. Therefore, the widening of domain 𝕊♯ uses the abstract join on types,
and the widening of the numerical domain:

Definition 5.16 (Widening in 𝕊♯). The widening ∇S,Ψ is defined identically to the abstract join, except
that ⊔num,Ψ is replaced with ∇num,Ψ.

5.4.4 Soundness of the abstract semantics

As mentioned above in Section 5.4.2, the abstract semantics of 𝕊♯ is sound, not with regard to the typed
semantics J⋅K𝑡 , but with regard to the untyped one J⋅K.

Because 𝕊♯ concretizes to 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍)), to define soundness with regard to the untyped se-
mantics we must first define an operator that strips away the types and valuations:

Definition 5.17 (Type erasure operator). The function untyp ∶ 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍)) → 𝒫(𝕊) is defined
as:

untyp(X) = {(σ, ℎ) | ((σ, Γ, ℎ,ℒ),𝓋) ∈ X}

66 CHAPTER 5. Type-based shape abstract domain

Theorem 5.7 (Soundness of the abstract semantics of 𝕊♯). Let 𝕤 ∈ 𝕊♯ and 𝑝 ∈ stmt. Suppose that for all
(𝑠,𝓋) ∈ γS(𝕤), 𝑠 is well typed under 𝓋. Then:

(J𝑝K ∘ untyp ∘ γS)(𝕤) ⊆ (untyp ∘ γS ∘ J𝑝K♯S)(𝕤).
In addition, the abstract semantics preserve the well-typedness of states:

∀(𝑠′,𝓋′) ∈ (γS ∘ J𝑝K♯S)(𝕤), 𝑠′ is well typed under 𝓋′.

Proof. The conjunction of the two propositions can be proven by induction on the syntax of statements:
following the same sketch as Theorem 4.8 and using Theorem 5.5, it can be proven that the abstract
semantics preserves typing; in addition, the soundness with regard to J⋅K can be proven from the defi-
nitions and the typing invariants.

5.4.5 Approximation of aliasing relations

Finally, we now detail how the types inferred by the analysis can be used to infer aliasing relations
between memory regions, as it is used by the abstractions that we define in Chapter 6.

We introduce a function may_aliasS ∶ 𝕊♯ × 𝕍S × ℕ × 𝕍S × ℕ → 𝔹 that soundly approximates aliasing
relations between two memory regions, in the sense that if may_aliasS(𝕤, (𝕧1, 𝕥1), ℓ1, (𝕧2, 𝕥2), ℓ2) is false,
then it is guaranteed that the region of size ℓ1 starting at address (𝕧1, 𝕥1) does not overlap with the region
of size ℓ2 starting at address (𝕧2, 𝕥2).

This function will be used by the domains we define in Chapter 6 to check the safety of some static
analysis operations.

First, we define an auxiliary predicate in_bounds𝓋♯ to check whether an abstract pointer offset is
still in the bounds of its pointed type after adding a constant length to it.

Definition 5.18 (in_bounds𝓋♯ predicate). Given 𝓋♯ ∈ 𝔻num, the predicate in_bounds𝓋♯ ∶ 𝕋 ♯ × ℕ takes
a (possibly abstract) pointer type and an integer, and is defined by:

in_bounds𝓋♯(𝑡[𝕤].(𝕚)∗, ℓ) ⟺ 𝓋♯ ⊨ 0 ≤ 𝕚 + ℓ < 𝕤 ⋅ size(𝑡)
in_bounds𝓋♯(𝑡.(𝕚)∗, ℓ) ⟺ 𝓋♯ ⊨ 0 ≤ 𝕚 + ℓ < size(𝑡)
in_bounds𝓋♯(𝑡.(𝑖)∗, ℓ) ⟺ 𝓋♯ ⊨ 0 ≤ 𝑖 + ℓ < size(𝑡)

It is undefined on non-pointer types.

Definition 5.19 (May-alias relations between regions in𝕊♯). The result ofmay_aliasS(𝕤, (𝕧1, 𝕥1), ℓ1, (𝕧2, 𝕥2), ℓ2)
is determined as follows. Let ((σ♯, Γ♯),𝓋♯) = 𝕤.

• If both 𝕧1 and 𝕧2 may be equal to zero, that is, if neither 𝓋♯ ⊨ 𝕧1 ≠ 0 nor 𝓋♯ ⊨ 𝕧2 ≠ 0 hold, then
the result is true.

• If one of 𝕥1 and 𝕥2 is a non-pointer type, then the result is true.
• Otherwise, let 𝑢1.(𝕚1)∗ = 𝕥1 and 𝑢2.(𝕚2)∗ = 𝕥2, where 𝕚1 and 𝕚2 are in𝕍 ♯⊎ℕ. If either in_bounds𝓋♯(𝑢1.(𝕚1)∗, ℓ1)
or in_bounds𝓋♯(𝑢2.(𝕚2)∗, ℓ2) does not hold, or if 𝑢1 contains 𝑢2 or 𝑢2 contains 𝑢1, then the result is
true. Otherwise, the result is false.

This function is sound in the following sense:

5.5. Analysis example 67

Theorem 5.8 (Soundness of may_aliasS). Given 𝕤 ∈ 𝕊♯, (𝕧1, 𝕥1) and (𝕧2, 𝕥2) in 𝕍S, given ℓ1, ℓ2 ∈ ℕ, if
may_aliasS(𝕤, (𝕧1, 𝕥1), ℓ1, (𝕧2, 𝕥2), ℓ2) = false, then for all ((σ, Γ, ℎ,ℒ), 𝓋) ∈ γS(𝕤), for all 𝑡1, 𝑡2 ∈ 𝕋 such
that (𝑡1,𝓋) ∈ γT(𝕥1) and (𝑡2,𝓋) ∈ γT(𝕥2):

𝓋(𝕧1) ∈ ⦇ 𝑡1 ⦈ℒ,𝓋 ∧ 𝓋(𝕧2) ∈ ⦇ 𝑡2 ⦈ℒ,𝓋 ⟹ [𝓋(𝕧1), 𝓋(𝕧1) + ℓ1[∩ [𝓋(𝕧2), 𝓋(𝕧2) + ℓ2[= ∅
Proof. Suppose that may_aliasS(𝕤, (𝕧1, 𝕥1), ℓ1, (𝕧2, 𝕥2), ℓ2) returns false. Then 𝑡1 = 𝑢1.(𝑖1)∗ and 𝑡2 =
𝑢2.(𝑖2)∗ for some 𝑢1, 𝑢2 ∈ 𝕋 such that 𝑢1 does not contain 𝑢2 and 𝑢2 does not contain 𝑢1 (follows from
the definition of “contains”). In addition, by Theorem 4.4:

addrℒ(𝑢1) ∩ addrℒ(𝑢2) = ∅
But by definition of interpretation (Definition 4.8) and contiguity of the labelling (Definition 4.2) and
because 𝓋(𝕧1) ≠ 0 and 𝓋(𝕧2) ≠ 0, [𝓋(𝕧1), 𝓋(𝕧1) + ℓ1[⊆ addrℒ(𝑢1) and [𝓋(𝕧2), 𝓋(𝕧2) + ℓ2[⊆ addrℒ(𝑢2),
and the result follows.

5.5 Analysis example

Let us take as an example the call of function dll_union at line 38 of Figure 4.1.
The details of translating from C to While-memory are given in Chapter 7, but in this simple case

we inline the function call and represent the arguments x and y of dll_union by two While-memory
variables 𝑥′ and 𝑦 ′ (to distinguish them from the arguments of merge). The result is the following
While-memory program:

𝑥′ ∶= 𝑥 + 4;
𝑦 ′ ∶= 𝑦 + 4;
∗4(∗4𝑦 ′ + 4) ∶= ∗4(𝑥′ + 4);
∗4(∗4(𝑥′ + 4)) ∶= ∗4𝑦 ′;
∗4(𝑥′ + 4) ∶= 𝑦 ′;
∗4𝑦 ′ ∶= 𝑥′

We take as initial state the abstract state of Example 5.4:

𝕧0 ∶ node.(0)∗𝑥

𝕧1 ∶ node.(0)∗𝑦
𝕧0 ≠ 0
𝕧1 ≠ 0

By rule AddR♯, variables 𝑥′ and 𝑦 ′ are both attributed type node.(4)∗ and a non-null abstract value. Let
us now analyze the third line: first, ∗4𝑦 ′ evaluates to the type {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} and to a non-null
value —indeed, the value is refined by the predicate “𝑥 ≠ 0”— by rule Load♯ and application of “deref”.
Thus ∗4𝑦 ′ + 4 evaluates to (𝕒, 𝕥𝑎) with 𝕒 non-null and 𝕥𝑎 = dll.(4)∗.

By similar reasoning, the right-hand side ∗4(𝑥′ + 4) evaluates to (𝕧, 𝕥𝑣), with 𝕧 non-null and 𝕥𝑣 =
{𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}. As a consequence, rule Store♯ applies, since deref𝓋♯(𝕥𝑎, 4) = 𝕥𝑣 (where 𝓋♯ repre-
sents the constraints accumulated at this point of the analysis) and the abstract type checking

𝕧 ∶ 𝕥𝑣
𝓋♯
↪−−→ 𝕥𝑣

is verified. Thus the third line leaves the abstract state unchanged.

68 CHAPTER 5. Type-based shape abstract domain

The abstract semantics can thus be computed for each statement; in the end, no alarm is emitted by
the analysis, and the abstract values of 𝑥′ and 𝑦 ′ remain unchanged, yielding the final state:

𝕧0 ∶ node.(0)∗𝑥

𝕧1 ∶ node.(0)∗𝑦

𝕧2 ∶ node.(4)∗𝑥′

𝕧3 ∶ node.(4)∗𝑦 ′

𝕧0 ≠ 0
𝕧1 ≠ 0
𝕧2 ≠ 0
𝕧3 ≠ 0

Which proves the spatial memory safety of this code fragment, and gives information about the pointed
data structures after its execution.

5.6 Conclusion and related work

We used physical types and the notion of well-typed state to develop an abstraction of memory based
on the respect of typing invariants, as well as a static analysis to verify that a program preserves these
invariants. Let us now compare our abstraction to existing approaches.

Our approach is more precise than the pointer analyses surveyed in Chapter 2 since those cannot
compute properties on heap objects that are not directly pointed to by program variables, whereas we
do (through typing constraints). The type-based domain 𝕊♯ can be seen as a refinement of Ghiya and
Hendren [GH96], except that rather than attributing to variables a “shape” among a limit set of possible
shapes, we attribute them a type among a rich set of types which finely describe data structures and
relations between them (the set of types being a parameter of the analysis), and represent numerical
predicates on values using a numerical abstract domain.

However, our analysis cannot verify properties as strong as those verified by full-fledged shape
analyses, mainly because it collapses all objects of the same type together. On the other hand, it can
natively handle data with unstructured sharing, which is challenging for shape analyses [LRC15].

In addition, the analysis presented so far does not perform the materialization and summarization
operations that characterize shape analysis [Cha+20]; however, the next chapter introduces a form of
refinement operation as an independent abstraction.

The only existing shape analysis that targets programs as low-level as we do, featuring, e.g., unre-
stricted pointer arithmetic or pointers to non-zero offsets into structures, is Predator [DPV13]. Predator
computes shape invariants expressed as tree automatawith edges labelled by numerical offsets. Its scope
is currently limited to various forms of singly- and doubly-linked lists (possibly nested or cyclic, with
data pointers and some sentinel pointers).

The type-based analysis by Diwan et al. [DMM98] is limited to type-safe C programs, i.e., without
type casts or arbitrary pointer arithmetic. However, it already observed and took advantage of the fact
that objects whose types are not in a subtyping relation do not alias, as we do.

Our type system is inspired by Chandra and Reps’s [CR99] and extends it. The analysis in [CR99]
uses a subtyping relation similar to ⪯, but it is limited as it is only a type inference algorithm, without
numerical analysis. As a consequence, it cannot handle pointer arithmetic like we do. Rondon et al.’s
analysis [RKJ10] does not need to assume type safety, but rather verifies it, in a type system stronger
than that of C. However, it does not handle programs that take advantage of structural subtyping, i.e.,
programs that use subtyping relations of the form 𝑡 .(𝑖)∗ ⪯ 𝑢.(𝑗)∗. It is also conservative in the way it
chooses when to materialize or summarize heap objects; this is due to the fact that it is mostly a type

5.6. Conclusion and related work 69

inference algorithm, in contrast to flow-sensitive abstract interpretation analyses like ours which can
make decisions based on the possible values in variables and in memory. In addition, liquid types do
not support the structural subtyping of C, whereas it is readily supported by our physical types.

The fact that our abstraction does not represent the heap explicitly is reminiscent of storeless seman-
tics [Jon81; Deu92] in which data is represented by the set of possible access paths, and an equivalence
relation on these access paths denoting aliasing. The type-based abstraction can be seen as such a store-
less semantics, but expressing the byte-level representation of data; in this view, access paths would be
sequences of pointer arithmetics and pointer dereferences. Aliasing relations can be derived from the
address subtyping relation, as explained in the previous section. However, we did not pursue the di-
rection of representing memory as pairs of aliased access paths. Rather, we abstract it using the typing
constraints. We can analyze programs manipulating unbounded structures, although we cannot ex-
press access paths as precise as the symbolic access paths of Deutsch [Deu94]. On the other hand, our
abstraction is more lightweight, and our analysis handles non-type-safe programs.

The safety verifications in Cyclone [Mor+02], CCured [Nec+05], or CheckedC [Ell+18] are mostly
based on type inference, and thus inherit the limitations of this family of algorithms, already mentioned
above [DMM98; CR99; RKJ10], namely the absence of value information that can be used to guide the
type abstraction.

70 CHAPTER 5. Type-based shape abstract domain

Chapter6
Retained and staged points-to predicates

Outline of the current chapter

6.1 Informal overview 71
6.2 Retained points-to predicates 74

6.2.1 Abstraction . 74
6.2.2 Abstract semantics of expressions . 76
6.2.3 Abstract semantics of statements . 77
6.2.4 Soundness of the abstract semantics 78

6.3 Staged points-to predicates 79
6.3.1 Abstraction . 79
6.3.2 Example analysis using staged points-to predicates 80
6.3.3 Abstract semantics of expressions . 80
6.3.4 Abstract semantics of statements . 82
6.3.5 Soundness of the abstract semantics 84

6.4 Combining retained and staged points-to predicates 85
6.5 Conclusion 85

The type-based shape abstraction suffers from two important limitations. First, the heap is represented
only in a summarized form by the type constraints and there is no way to retain additional information
about its contents. Second, all writes to memory must preserve the type invariants—situations where
the type invariants are temporarily violated are not handled. We solve both problems by tracking some
points-to predicates and attaching specific properties to them. We give an informal overview of these
points-to predicates in Section 6.1, before describing them in detail in the form of two abstract domains,
namely the domain of retained (Section 6.2) and staged (Section 6.3) points-to predicates.

6.1 Informal overview

Consider again the example of Figure 4.1, repeated on page 72. In Chapter 5, we have shown how the
dll_union function can be proved to preserve typing invariants using our type-based shape domain.

71

72 CHAPTER 6. Retained and staged points-to predicates

1 typedef struct uf {
2 struct uf* parent;
3 } uf;
4

5 typedef struct dll {
6 struct dll *prev; /* != null. */
7 struct dll *next; /* != null. */
8 } dll;
9

10 typedef unsigned int node_kind;
11 typedef struct node {
12 node_kind kind; /* kind <= 5. */
13 dll dll;
14 uf uf;
15 } node;
16

17 uf *uf_find(uf *x) {
18 while(x->parent != 0) {
19 uf *parent = x->parent;
20 if(parent->parent == 0)
21 return parent;
22 x->parent = parent->parent;
23 x = parent->parent;
24 }
25 return x;
26 }

24 void dll_union(dll *x, dll *y) {
25 y->prev->next = x->next;
26 x->next->prev = y->prev;
27 x->next = y; y->prev = x;
28 }
29

30 void uf_union(uf *x, uf *y) {
31 uf *rootx = uf_find(x);
32 uf *rooty = uf_find(y);
33 if(rootx != rooty)
34 rootx->parent = rooty;
35 }
36

37 void merge(node *x, node *y) {
38 dll_union(&x->dll, &y->dll);
39 uf_union(&x->uf, &y->uf);
40 }
41

42 node *make(node_kind kind) {
43 node *n = malloc(sizeof(node));
44 n->kind = kind;
45 n->dll.next = &n->dll;
46 n->dll.prev = &n->dll;
47 n->uf.parent = NULL;
48 return n;
49 }

Figure 4.1: An algorithm for union-find and listing elements in a partition. (repeated from page 34)

0 1 2

0x0

0x20∶ 0x60∶ 0x80∶

(a) Concrete state.

ℳ ∶ node_kind ↦ {𝑥 ∶ word4 | 𝑥 ≤ 5}
uf ↦ uf.(0)∗
dll ↦ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} × {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0}
node ↦ node_kind × dll × uf

(b) Physical types.

∀𝓋, ∀(σ, ℎ,ℒ, Γ) well-typed state, ∀𝑣 value ∶
𝑣 ∈ ⦇ node.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ 𝑣 + 4 ∈ ⦇ node.(4) ⦈ℒ,𝓋 ∧ 𝑣 + 4 ≠ 0 (1)

⦇ node.(4)∗ ⦈ℒ,𝓋 ⊆ ⦇ dll.(0)∗ ⦈ℒ,𝓋 (2)
𝑣 ∈ ⦇ dll.(0)∗ ⦈ℒ,𝓋 ∧ 𝑣 ≠ 0 ⟹ ℎ[𝑣..𝑣 + 4] ∈ ⦇ {𝑥 ∶ dll.(0)∗ | 𝑥 ≠ 0} ⦈ℒ,𝓋 (3)

⦇ uf.(0)∗ ⦈ℒ,𝓋 ∩ ⦇ dll.(0)∗ ⦈ℒ,𝓋 = {0} (4)
(c) Some structural invariants entailed by ℳ

Figure 4.2: Concrete state, physical types and example structural invariants. (repeated from page 35)

6.1. Informal overview 73

𝕧0 ∶ uf.(0)∗x 𝕧1 ∶ uf.(0)∗parent 𝕧2 ∶ uf.(0)∗
𝕧0 ≠ 0
𝕧1 ≠ 0
𝕧2 ≠ 0

Figure 6.1: Abstract state just before line 22.

However, this approach does not suffice when considering more complex functions, like uf_find.
First, we remark that this function may run correctly only when the x argument is non-null due to the
dereference at line 18. Therefore, the verification of this function will require some form of annotation
specifying this precondition.

Next, we observe that in order to prove the validity of the access to parent->parent at line 20, the
analysis needs to establish that parent is equal to x->parent, which is non-null due to the condition at
line 18. Such reasoning cannot be performed solely using a combination of types and numerical pred-
icates, because the type-based invariants cannot attach different information to different heap objects
of the same type.

Therefore, we add the possibility to represent additional points-to predicates. Such predicates express
a points-to relation between two values and can complement pointer types with more precise informa-
tion about the value pointed. Informally, this corresponds to adding additional boxes to our graphical
representation of the abstract state, which correspond to selected heap addresses. Only boxes that are
reachable from a variable finite chain of points-to predicates may be retained this way. Figure 6.1 shows
the abstract state at line 22 that enables to proves the correctness of the parent->parent access. In the
following, we call such predicates retained points-to predicates.

Such predicates are obtained by retaining information about recent memory writes, reads, or con-
dition tests and need to be dropped as soon as they cannot be proved to be preserved. Indeed, when the
analysis encounters a memory write, it drops all such boxes for which the absence of aliasing cannot
be established with the current information; some aliasing information (e.g. Equation (4) in Figure 4.2)
comes from the partitioning of the heap (see Section 5.4.5). This process will be referred to as blurring
as it carries some similarity with the blurring encountered in some shape analyses.

Note that retained points-to predicates offer a very lightweight way to keep some memory cells
represented precisely, without resorting to unfolding or focusing as in usual shape abstract domains,
which is generally more costly (but also more powerful from the logical point of view), as retaining a
heap address or blurring it does not require modifying the summarized heap representation. Physical
types coupled with retained points-to predicates allow to verify memory safety and typing invariant
preservation for the four functions dll_union, uf_find, uf_union and merge.

Finally, we consider the make function. For the sake of simplicity, we assume that malloc always
returns a non-null pointer. We note that variable n does not point to a valid node object until the very
end of the function, thus attempting to prove it satisfies physical type node.(0) before that point—for
instance, just after the call to malloc—will fail. In general, some code patterns like memory allocation
or byte-per-byte copy temporarily do not preserve the structural invariants described by our types.
To alleviate this, we augment our abstraction with a notion of staged points-to predicates that repre-
sent precisely the effect of sequences of store instructions such as the body of make, allowing to delay
their abstraction into types at a later point. We give a step-by-step account of the analysis of make in
Section 6.3.2.

These two extensions, retained points-to predicates and staged points-to predicates, take the form
of two independent abstract domains.

74 CHAPTER 6. Retained and staged points-to predicates

6.2 Retained points-to predicates

6.2.1 Abstraction

Points-to predicates are an abstraction that extends another abstract domain 𝔻♯:

Notation 6.1 (Parameter domain for retained points-to predicates). In the rest of this chapter, we denote
as 𝔻♯ an abstract domain with concretization γD ∶ 𝔻♯ → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍)). We denote as 𝕍D the
set of abstract values of 𝔻♯ (see Section 3.4.1); we assume that 𝔻♯ provides a sound abstract semantics
of expressions ℰJ⋅K♯D and a sound abstract semantics of statements J⋅K♯D, and that J⋅K♯D preserves the well-
typedness of states.

Example 6.1. 𝔻♯ can be instantiated to 𝕊♯ (and it is the case in our experiments, see Section 6.4) and
𝕍D to 𝕍S = 𝕍 ♯ × 𝕋 ♯.

We also assume that 𝔻♯ possesses an underlying numerical domain, like 𝕊♯ does, for instance. In order
to simplify notation, we extend our notations 𝓋♯ ⊨ 𝑝 (numerical predicate 𝑝 is verified by the abstract
semantics of 𝓋♯, notation defined in Definition 3.8), to elements 𝕤 ∈ 𝔻♯, i.e. 𝕤 ⊨ 𝑝, where 𝑝 is a formula
whose free variables are in 𝕍D. Similarly, we shall let 𝕤[𝑝] denote the addition of a numerical constraint
𝑝 to the abstract state 𝕤.

Intuitively, a points-to predicate constrains an abstract value to point to some abstract region; and
an abstract region is a partition of a memory region into contiguous intervals, such that each interval
is mapped to an abstract value. Formally:

Definition 6.1 (Abstract region). An abstract region ℛ ∶ 𝕀 ⇀ 𝕍D is a partial mapping from positive
integer intervals to abstract values, such that ⋃𝑖∈dom(ℛ) = [0, 𝑛[for some 𝑛, called the size of ℛ and
denoted as size(ℛ); and any two intervals in dom(ℛ) are disjoint. The set of abstract regions is denoted
as Reg(𝔻♯).

An abstract region is the abstraction of a set of values, by concatenation of the values it contains.
This is expressed by the concretization function:

γreg ∶ Reg(𝔻♯) → 𝒫(𝕍 × (𝕍 ♯ → 𝕍))

γreg(ℛ) = {(𝑣 ,𝓋) | 𝑣 = γVD(𝓋,ℛ(𝑖1)) ∶∶ ⋯ ∶∶ γVD(𝓋,ℛ(𝑖𝑛))
where 𝑖1,… , 𝑖𝑛 are the elements of dom(ℛ) in order.

}

Given ℛ ∈ Reg(𝔻♯), ℛ([𝑛1, 𝑛2[) is thus the abstract value covering bytes 𝑛1 to 𝑛2 − 1 of the region. In a
slight abuse of notation, we shall consider ℛ([𝑛1, 𝑛2[) to be a valid abstract value even when [𝑛1, 𝑛2[is
not an element of dom(ℛ), but is nonetheless included in [0, size(ℛ)[. In full rigor, this implies requests
to the underlying numerical domain to reconstruct the value from the abstract values in the intervals
of dom(ℛ) covered by [𝑛1, 𝑛2[, but in order to not further complexify this formalization, we consider it
an implementation detail. Similarly, we shall write ℛ[[𝑛1, 𝑛2[← 𝕧] to denote the replacement of bytes
[𝑛1, 𝑛2[of ℛ with 𝕧 ∈ 𝕍D.

Informally, the meaning of a points-to predicate 𝕒 ↦ ℛ is that the value of size size(ℛ) stored in the
heap at address 𝕒 is one of the values abstracted by ℛ. The next two definitions formally define what
points-to predicates express relative to the rest of the abstract state.

Points-to predicates are represented by a partial function 𝑝 mapping abstract values (representing
addresses) to abstract regions. We will call such a mapping from abstract values to abstract regions an
abstract points-to map, and the concrete meaning of such a map is obtained by considering all possible
concrete values for each abstract region.

6.2. Retained points-to predicates 75

Definition 6.2 (Abstract points-to map). An abstract points-to map for domain 𝔻♯, whose set is denoted
ℙ♯(𝔻♯), is a partial function from abstract values to abstract regions:

ℙ♯(𝔻♯) = 𝕍D ⇀ Reg(𝔻♯)
An abstract points-map is the abstraction of a set of heaps, via the concretization:

γP ∶ ℙ♯(𝔻♯) → 𝒫(ℍ × (𝕍 ♯ → 𝕍))
γP(𝕡) = {(ℎ,𝓋) | ∀𝕒 ∈ 𝕍D, ∀𝑣 ∈ 𝕍 , (𝑣 ,𝓋) ∈ γreg(𝕡(𝕒)) ⟹ ℎ[γVD(𝓋, 𝕒)..γVD(𝓋, 𝕒)+size(size(𝕡(𝕒)))] = 𝑣}

The retained points-to predicate abstraction consists in associating an abstract points-to map 𝕡 to an
abstract state of 𝔻♯. The concretization of these predicates is done by a form of intersection semantics
between the two domains.

Definition 6.3 (Retained points-to predicate domain). The retained points-to predicate abstract domain
for domain 𝔻♯, denoted as ℝ♯(𝔻♯), is the product set of 𝔻♯ with abstract points-to maps:

ℝ♯(𝔻♯) = 𝔻♯ × ℙ♯(𝔻♯)
Its concretization is:

γR ∶ ℝ♯(𝔻♯) → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))
γR(𝕤,𝕡) = {((σ, Γ, ℎ,ℒ), 𝓋) ∈ γD(𝕤) | (ℎ,𝓋) ∈ γP(𝕡)}

Its abstract values range over 𝕍R = 𝕍D.

Interestingly, this abstraction is defined independently from any notion of type. In our analyses, we
will instantiate 𝔻♯ to 𝕊♯, but the retained points-to predicate domain may be a useful extension to other
abstract domains, e.g., one performing an Andersen-style alias analysis (see Section 2.1).

The type-based shape domain 𝕊♯ remembers flow-sensitive information only about the variable
store, as the heap is represented only using the type invariants. We use retained points-to predicates
𝕧 ↦ ℛ to store flow-sensitive information about the heap: they make it possible to attach numerical
and type information to values stored in the heap. Retained points-to predicates do not quite achieve
the effect of materialization in shape analyses, because they merely retain information about recently
accessed memory zones, rather than refining a summarized region into a more precise representation.

Example 6.2. Figure 6.1 graphically represents the abstract state just before the execution of line 22.
Here the parameter domain 𝔻♯ is instantiated to 𝕊♯. The abstract state is a pair (𝕤,𝕡) ∈ ℝ♯(𝕊♯), where
𝕤 ∈ 𝕊♯ is:

𝕤 = ([x ↦ 𝕧0, parent ↦ 𝕧1], [x ↦ uf.(0)∗, parent ↦ uf.(0)∗], 𝓋♯)
with 𝓋♯ ∈ 𝔻num, and

𝕡 = [(𝕧0, uf.(0)∗) ↦ ℛ1, (𝕧1, uf.(0)∗) ↦ ℛ2]
where ℛ1 and ℛ2 are the two abstract regions defined by:

ℛ1 = [[0, 4[↦ (𝕧1, uf.(0)∗)]
ℛ2 = [[0, 4[↦ (𝕧2, uf.(0)∗)].

76 CHAPTER 6. Retained and staged points-to predicates

6.2.2 Abstract semantics of expressions

The abstract semantics of expressions ℰJ𝑒K♯R ∶ ℝ♯(𝔻♯) → 𝕍R × ℝ♯(𝔻♯) computes, from an expression
and an abstract state, a pair constituted of an abstract value and a new abstract state.

For most expressions, the abstract semantics of ℝ♯(𝔻♯) does not need to use the abstract points-to
map and is the same as the abstract semantics of 𝔻♯. The only exception is memory reads. The result
of a read of size ℓ at address 𝕒 is determined as follows:

• if the read region can be determined to be included in one of the regions retained in the abstract
points-to map, then the read is performed from that region.

• Otherwise, the abstract semantics of 𝔻♯ is used to perform the read, and the resulting value is
added to the abstract points-to map.

There is one additional parameter that must be determined when adding a new region to the abstract
points-to map: the choice of the limits (i.e. the base and size) of the region to retain. One possible choice
is to retain the region read, resulting in the retained points-to predicate 𝕒 ↦ ℛ, with size(ℛ) = ℓ.

In the context of type-based analysis (i.e. when the parameter domain of ℝ♯ is 𝕊♯), we make a differ-
ent choice: when a memory access is made into a region of type 𝑡 , we retain the region corresponding
to the entire type. In C, this can correspond to retaining an entire structure when an access is made to a
single field of that structure, for instance. This choice of a more relevant region to retain can enhance
precision e.g. when manipulating a structure whose fields are related by some constraint (see example
in Section 4.4.2). However, in some cases, type information may fail to help identify a relevant region
to retain, e.g. if the memory read dereferences an expression whose type is not a pointer.

In order to abstract these considerations from the type-based domain 𝕊♯, we require the existence
of a function should_retainD ∶ 𝔻♯ × 𝕍D → ({true} × ℕ × ℕ) ∪ {false}, which takes an abstract value 𝕒 and
returns whether memory accesses to 𝕒 should be retained as points-to predicates; and, if so, what should
be the size of the resulting region and the offset of 𝕒 in it. For instance, for the type-based domain 𝕊♯,
should_retainS is defined as follows:

Definition 6.4 (Retaining decision function in 𝕊♯). The result of should_retainS(𝕤, (𝕒, 𝕥𝑎)) is defined as
follows:

• if 𝕥𝑎 is not a pointer type, then should_retainS(𝕤, (𝕒, 𝕥𝑎)) = false.
• Else, if 𝕥𝑎 = 𝑡.(𝕚)∗ and the offset can be precisely determined, i.e. there exists 𝑖 ∈ ℕ such that

𝕤 ⊨ 𝕚 = 𝑖, then should_retainS(𝕤, (𝕒, 𝕥𝑎)) = (true, 𝑖, size(𝑡)).
• Else, if 𝕥𝑎 = 𝑡[𝕟].(𝕚)∗ and the offset can be precisely determined, i.e. there exists 𝑖, 𝑛 ∈ ℕ such that

𝕤 ⊨ 𝕚 = 𝑖 ∧ 𝕟 = 𝑛, then should_retainS(𝕤, (𝕒, 𝕥𝑎)) = (true, 𝑖, 𝑛 ⋅ size(𝑡)).
• Otherwise, the offset cannot be determined precisely: should_retainS(𝕤, (𝕒, 𝕥𝑎)) = false.

This enables us to define the function “retain”, which retains a value in a newly created region of the
abstract points-to map, if possible, i.e. if should_retainD returns true.

Definition 6.5 (retain function). The function retain ∶ 𝔻♯ × ℙ♯(𝔻♯) × 𝕍D × ℕ × 𝕍D → 𝔻♯ × ℙ♯(𝔻♯) is
defined by:

• if should_retainD(𝕤, 𝕒) = false, then retain does nothing: retain(𝕤,𝕡, 𝕒, ℓ, 𝕧) = (𝕤,𝕡).
• Otherwise, if should_retainS(𝕤, 𝕒) = (true, 𝑖, 𝑛), then let ℛ be a region of size 𝑛 containing a fresh,
unconstrained value. Let ℛ′ = ℛ[[𝑖, 𝑖+ ℓ[← 𝕧]. Let 𝕤1 = 𝕤[𝕒0 = 𝕒 − 𝑖], where 𝕒0 is a fresh
variable. Then:

retain(𝕤,𝕡, 𝕒, ℓ, 𝕧) = (𝕤1, 𝕡[𝕒0 ← ℛ′])
Figure 6.2 uses this function to define the semantics of memory reads.

6.2. Retained points-to predicates 77

ℰJ𝑒K♯R(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
∃𝕒0 ∈ dom(𝕡1), 𝕤1 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡1(𝕒0))[ℛ = 𝕡1(𝕒0)

ℰJ∗ℓ𝑒K♯R(𝕤,𝕡) = (ℛ([𝕒−𝕒0, 𝕒−𝕒0+ℓ[), (𝕤1,𝕡1))

ℰJ𝑒K♯R(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
∀𝕒0 ∈ dom(𝕡1),¬(𝕤1 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡1(𝕒0))[) ℰJ∗ℓ𝑒K♯D𝕤1 = (𝕧, 𝕤2)

ℰJ∗ℓ𝑒K♯R(𝕤,𝕡) = (𝕧, retain(𝕤2,𝕡1, 𝕒, ℓ, 𝕧))

Figure 6.2: Abstract semantics of memory reads in ℝ♯.

6.2.3 Abstract semantics of statements

For most statements, the abstract semantics of ℝ♯ ignores the abstract points-to map and are the same
as the abstract semantics of 𝕊♯. The only exception is memory writes.

Several regions may be retained, yet concretize to the same concrete regions. Consider again the
abstract state in Figure 6.1 representing the state just before line 22: although two abstract regions are
retained, nothing in the type invariants excludes that x and parent in fact point to the same memory
location. (It is never the case in this program, but this property cannot be expressed in our type system.)
Upon a memory write, all regions that may alias with the written region should be updated; for some
regions, it may be impossible to precisely determine whether they are affected by the write operation.
This is the case for the region pointed to by parent upon the operation x->parent = ... at line 22. To
maintain a correct abstract state, those possibly aliasing regions must be dropped before performing the
write.

Definition 6.6 (Dropping aliasing regions). The operator drop_alias ∶ 𝔻♯ × ℙ♯(𝔻♯) × 𝕍D × ℕ → ℙ♯(𝔻♯)
is defined as follows: drop_alias(𝕤,𝕡, 𝕒, ℓ) is the abstract points-to map obtained from 𝕡 by dropping
every points-to predicate 𝕧 ↦ ℛ such that may_aliasD(𝕤, 𝕒, ℓ, 𝕧, size(ℛ)) = true.

The set of concrete heaps represented by a points-to map is necessarily larger after dropping some
mappings.

Lemma 6.1 (Stability of abstract points-to map concretization by drop_alias). Let 𝕤 ∈ 𝔻♯, 𝕡 ∈ ℙ♯(𝔻♯),
𝕒 ∈ 𝕍D and ℓ ∈ ℕ. Then γP(𝕡) ⊆ γP(drop_alias(𝕤,𝕡, 𝕒, ℓ)).
Proof. From Definitions 6.1 and 6.2: each points-to predicate in 𝕡 is a constraint on the concretization
γP(𝕡), therefore removing such predicates removes constraints, and enlarges the concretization.

The semantics of memory writes is defined by the following rule:

ℰJ𝑒1K♯R(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
ℰJ𝑒2K♯R(𝕤1,𝕡1) = (𝕧, (𝕤2,𝕡2)) 𝕡3 = drop_alias(𝕤2,𝕡2, 𝕒, ℓ) (𝕤3,𝕡4) = retain(𝕤2,𝕡3, 𝕒, ℓ, 𝕧)J∗ℓ𝑒1 ∶= 𝑒2K♯R(𝕤,𝕡) = (J∗ℓ𝑒1 ∶= 𝑒2K♯D𝕤3, 𝕡4)

First, all regions possibly aliasing with the region written are dropped from the abstract points-to map.
Then, the memory write is performed via the abstract operator provided by 𝕊♯, but also retained in the
abstract points-to map.

78 CHAPTER 6. Retained and staged points-to predicates

Abstract join

Joining abstract states can be done by conserving points-to predicates with the same source address—
the information about which abstract addresses are “the same” being given by the two-way renaming
constructed in 𝔻♯— and joining their destination regions.

However, we chose to implement a simpler join which works by first dropping the points-to predi-
cates. We observed satisfactory precision (see Chapter 7, Section 7.3) and in particular, in cases where
our analysis could not verify the properties of interest, the loss of precision was not at the join level.
We therefore preferred to avoid making the implementation more complex for little gain.

Definition 6.7 (Valid two-way renamings in ℝ♯(𝔻♯)). Given (𝕤1,𝕡1), (𝕤2,𝕡2) ∈ ℝ♯(𝔻♯), a valid two-
way renaming between them is any valid two-way renaming between 𝕤1 and 𝕤2.

Definition 6.8 (Abstract join in ℝ♯(𝔻♯)). Let 𝕣1 = (𝕤1,𝕡1) and 𝕣2 = (𝕤2,𝕡2) be two elements of ℝ♯(𝔻♯).
Let Ψ ⊆ (𝕍 ♯)3 be a valid two-way renaming between 𝕣1 and 𝕣2. The abstract join ⊔R,Ψ ∶ ℝ♯(𝔻♯) ×
ℝ♯(𝔻♯) → ℝ♯(𝔻♯) is defined as:

𝕣1 ⊔R,Ψ 𝕣2 = (𝕤1 ⊔D,Ψ 𝕤2, [])
The widening ∇R,Ψ is defined similarly to the join:

Definition 6.9 (Widening in ℝ♯(𝔻♯)). Let 𝕣1 = (𝕤1,𝕡1) and 𝕣2 = (𝕤2,𝕡2) be two elements of ℝ♯(𝔻♯). Let
Ψ ⊆ (𝕍 ♯)3 be a valid two-way renaming between 𝕣1 and 𝕣2. The widening ⊔R,Ψ ∶ ℝ♯(𝔻♯) × ℝ♯(𝔻♯) →
ℝ♯(𝔻♯) is defined as:

𝕣1 ∇R,Ψ 𝕣2 = (𝕤1 ∇D,Ψ 𝕤2, [])
This widening is guaranteed not to result in infinite ascending chains, as after one widening step the
chains it creates are in bijection with the ascending chains created by ∇D.

Abstract inclusion

The most precise abstract inclusion for this domain would consist, to verify that 𝕣1 is included in 𝕣2, in
verifying that every points-to predicate of 𝕣2 corresponds to a predicate in 𝕣1 that has the same source
address, and points to an included region.

However, for the same simplicity reasons as explained above for the join, we choose a simpler def-
inition: abstract inclusion can be defined by abstracting away points-to predicates. In particular, 𝕣1 is
included in 𝕣2 only if 𝕣2 does not have any points-to predicates.

Definition 6.10 (Valid renamings in ℝ♯(𝔻♯)). Given 𝕣1 = (𝕤1,𝕡1) and 𝕣2 = (𝕤2,𝕡2) two elements of
ℝ♯(𝔻♯), a valid renaming from 𝕣2 to 𝕣1 is any valid renaming from 𝕤2 to 𝕤1.

Definition 6.11 (Abstract inclusion in ℝ♯(𝔻♯)). The abstract inclusion ⊑R,Φ ⊆ ℝ♯(𝔻♯)×ℝ♯(𝔻♯) is defined
as follows: given 𝕣1 = (𝕤1,𝕡1) and 𝕣2 = (𝕤2,𝕡2) two elements of ℝ♯(𝔻♯) and Φ ∶ 𝕍 ♯ → 𝕍 ♯ a valid
renaming from 𝕣2 to 𝕣1:

𝕣1 ⊑R,Φ 𝕣2 ⟺ 𝕡2 = [] ∧ 𝕤1 ⊑D,Φ 𝕤2

6.2.4 Soundness of the abstract semantics

Theorem 6.2 (Soundness of the abstract expression semantics). Let 𝕣 ∈ ℝ♯(𝔻♯) and 𝑒 ∈ expr. Let
(𝕧, 𝕣 ′) = ℰJ𝑒K♯R𝕣 . If for all (𝑠,𝓋) ∈ γR(𝕣), 𝑠 is well typed under 𝓋, then:

1. Expression evaluation does not modify the concrete state, therefore all states abstracted by 𝕣 are also
abstracted by 𝕣 ′:

(untyp ∘ γR)(𝕣) ⊆ (untyp ∘ γR)(𝕣 ′)

6.3. Staged points-to predicates 79

2. The value component is sound:

{ℰJ𝑒K(σ, ℎ) | (σ, ℎ) ∈ (untyp ∘ γR)(𝕣)} ⊆ {γVR(𝓋, 𝕧) | (𝑠,𝓋) ∈ γR(𝕣 ′)}

Proof sketch. By induction on the syntax of expressions. Let (𝕤,𝕡) = 𝕣 .
• If 𝑒 is a binary operator application (𝑒 = 𝑒1 ⋄ 𝑒2): the points-to predicates are not used and not
modified, i.e. ℰJ𝑒1 ⋄ 𝑒2K♯R(𝕤,𝕡) = (ℰJ𝑒1 ⋄ 𝑒2K♯D𝕤,𝕡). Therefore the induction hypothesis on 𝑒1 and
𝑒2 and the soundness of abstract expression semantics in 𝔻♯ yield the result.

• All other kinds of expressions except memory reads can be treated similarly.
• If 𝑒 is a memory read (𝑒 = ∗ℓ𝑒loc): if the region read is included in one of the retained regions, then
the read is sound because the concrete states abide by the retained points-to predicates (Defini-
tion 6.3); otherwise, the result of the read is sound by soundness of 𝔻♯ and the resulting abstract
state is sound because the analysis retains a correct points-to predicate.

Theorem 6.3 (Soundness of the abstract semantics of ℝ♯(𝔻♯)). Let (𝕤,𝕡) ∈ ℝ♯(𝔻♯) and P ∈ stmt. Suppose
that for all (𝑠,𝓋) ∈ γR(𝕤,𝕡), 𝑠 is well typed under 𝓋. Then:

(JPK ∘ untyp ∘ γR)(𝕤) ⊆ (untyp ∘ γR ∘ JPK♯R)(𝕤,𝕡).

In addition, for all (𝑠′,𝓋′) ∈ (γR ∘ JPK♯R)(𝕤,𝕡), 𝑠′ is well typed under 𝓋′.
Proof sketch. By induction on the syntax of statements. The proof is trivial for all statements types
except memory writes. Regarding memory writes, the soundness derives from Lemma 6.1 and the fact
that we retain a correct points-to predicate. Finally, clearly we have (γR ∘ JPK♯R)(𝕤,𝕡) ⊆ (γD ∘ JPK♯D)𝕤.
Therefore J⋅K♯R preserves well-typedness of states, as J⋅K♯D does.

6.3 Staged points-to predicates

6.3.1 Abstraction

Staged points-to predicates are an abstraction distinct from retained points-to predicates, although in
practice, we will use them together. Unlike retained points-to predicates, staged points-to predicates
represent delayed writes, and therefore they take precedence over the heap representation of the pa-
rameter domain. We express this using the notion of asymmetric merging of concrete heaps:

Definition 6.12 (Asymmetric heap merging). Given ℎ, ℎ′ ∈ ℍ, the heap ℎ▷ ℎ′ ∶ dom(ℎ) ∪dom(ℎ′) → 𝕍1
is defined by:

(ℎ ▷ ℎ′)(𝑎) = {ℎ
′(𝑎) if 𝑎 ∈ dom(ℎ′)

ℎ(𝑎) otherwise

Definition 6.13 (Staged points-to predicate domain). The staged points-to predicate domain, denoted
as 𝕊𝕥♯(𝔻♯), is the product of 𝔻♯ with an abstract points-to map:

𝕊𝕥♯(𝔻♯) = 𝔻♯ × ℙ♯(𝔻♯)
Its concretization is:

γSt ∶ 𝕊𝕥♯(𝔻♯) → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))
γSt(𝕤,𝕡) = {((σ, Γ, ℎ ▷ ℎ′,ℒ), 𝓋) | ((σ, Γ, ℎ,ℒ), 𝓋) ∈ γD(𝕤) and (ℎ′,𝓋) ∈ γP(𝕡)}

80 CHAPTER 6. Retained and staged points-to predicates

𝕧1 ∶ node.(0)∗n

𝕧0 ∶ node_kindkind

𝕧0 ∶ node_kind

𝕧3 ∶ node.(4)∗

𝕧4 ∶ word8

𝕧0 ≤ 5
𝕧1 ≠ 0
𝕧3 ≠ 0

Figure 6.3: Example of abstract state in 𝕊𝕥♯(𝔻♯).

Example 6.3. Figure 6.3 shows an example abstract state 𝕣 = (𝕤,𝕡) ∈ 𝕊𝕥♯(𝕊♯), where 𝕡 is an abstract
points-to map with a single points-to predicate:

𝕤 = ([n ↦ 𝕧1, kind ↦ 𝕧0], [n ↦ node.(0)∗, kind ↦ node_kind])
𝕡 = [𝕧1 ↦ ℛ]

where
ℛ = [[0, 4[↦ (𝕧0, node_kind), [4, 8[↦ (𝕧3, node.(4)∗), [8, 16[↦ (𝕧4, word8)]

The staged points-to predicate takes precedence over the memory invariants abstracted by 𝕤, therefore
n points to a region that is not consistent with type node (because bytes 8 to 12 do not meet the neces-
sary constraints), even though n is labelled with type node.(0)∗ in 𝕤; and therefore some states in the
concretization of 𝕣 are ill-typed.

6.3.2 Example analysis using staged points-to predicates

Let us first describe informally the analysis of the make function from our running example (Figure 6.4a)
using 𝕊𝕥♯(𝕊♯). For this analysis we can consider that 𝕏 contains only two variables names: 𝕏 =
{n, kind}. The analysis starts from an initial state compliant with the precondition expressed of make,
i.e., kind contains a value of type node_kind which is less than or equal to 5, and n contains any value
of any type. Figure 6.4b shows the abstract state just after line 43, or equivalently, after applying the
abstract semantics of the 𝑛 ∶= mallocnode(16) statement: the staged points-to predicate n ↦ ℛ has
been added, with ℛ a region containing a single, 16-byte, unconstrained value.

All subsequent writes are performed to the staged region (Figures 6.4c and 6.4d). To understand
why the two middle abstract values have type node.(4)∗, recall that the C expression &n->dll translates
as simply n + 4 in While-memory. After line 47, the abstract region pointed by n is consistent with
type node, which can be verified in our analyzer by making sure to “commit” the entirety of the abstract
points-to map, so that the analysis ends with no staged points-to predicates left, as in Figure 6.4e.

6.3.3 Abstract semantics of expressions

We now describe the abstract semantics of staged points-to predicates in detail. For all expressions
except memory reads, the abstract semantics of 𝕊𝕥♯(𝔻♯) is the same as the abstract semantics of 𝔻♯ and
does not use the abstract points-to map. The result of a read of size ℓ at address 𝕒 is determined as
follows:

• if the read region can be determined to be included in one of the regions retained in the abstract
points-to map, then the read is performed from that region.

6.3. Staged points-to predicates 81

1 node *make(node_kind kind) {
2 node *n =
3 malloc(sizeof(node));
4 n->kind = kind;
5 n->dll.next = &n->dll;
6 n->dll.prev = &n->dll;
7 n->uf.parent = NULL;
8 return n;
9 }

(a) Code of fuction make.

𝕧1 ∶ node.(0)∗n

𝕧0 ∶ node_kindkind 𝕧2 ∶ word16

𝕧0 ≤ 5
𝕧1 ≠ 0

(b) Abstract state just after line 3.

𝕧1 ∶ node.(0)∗n

𝕧0 ∶ node_kindkind

𝕧0 ∶ node_kind

𝕧3 ∶ node.(4)∗

𝕧4 ∶ word8

𝕧0 ≤ 5
𝕧1 ≠ 0
𝕧3 ≠ 0

(c) Abstract state just after line 5.

𝕧1 ∶ node.(0)∗n

𝕧0 ∶ node_kindkind

𝕧0 ∶ node_kind

𝕧3 ∶ node.(4)∗

𝕧5 ∶ node.(4)∗
𝕧6 ∶ word4

𝕧0 ≤ 5
𝕧1 ≠ 0
𝕧3 ≠ 0
𝕧5 ≠ 0
𝕧6 = 0

(d) Abstract state after line 7.

𝕧1 ∶ node.(0)∗n

𝕧0 ∶ node_kindkind

𝕧0 ≤ 5
𝕧1 ≠ 0

(e) Abstract state after (successfully) committing the staged points-to
predicate.

Figure 6.4: Abstract states at different points in the analysis of function make.

82 CHAPTER 6. Retained and staged points-to predicates

ℰJ𝑒K♯St(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
∃𝕒0 ∈ dom(𝕡1), 𝕤1 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡1(𝕒0))[ℛ = 𝕡1(𝕒0)

ℰJ∗ℓ𝑒K♯St(𝕤,𝕡) = (ℛ([𝕒−𝕒0, 𝕒−𝕒0+ℓ[), (𝕤1,𝕡1))

ℰJ𝑒K♯St(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1)) ∀𝕒0 ∈ dom(𝕡1),¬(𝕤1 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡(𝕒0))[)
(𝕤2,𝕡2) = commit_alias((𝕤1,𝕡1), 𝕒, ℓ) ℰJ∗ℓ𝑒K♯D𝕤2 = (𝕧, 𝕤3)

ℰJ∗ℓ𝑒K♯St(𝕤,𝕡) = (𝕧, (𝕤3, 𝕡2))

Figure 6.5: Abstract semantics of memory reads in 𝕊𝕥♯(𝔻♯).

• Otherwise, all staged points-to predicates that possibly alias with the region read are “committed”
to memory, i.e., the delayed writes that they represent are performed using the abstract semantics
of the subdomain 𝔻♯; the memory read is also performed using the abstract semantics of 𝔻♯.

The action of “committing” delayed writes to memory is defined through the function commit_alias ∶
𝕊𝕥♯(𝔻♯) × 𝕍D × ℕ → 𝕊𝕥♯(𝔻♯) which commits to memory all the delayed writes that may alias with a
given region:

Definition 6.14 (commit_alias function). The function commit_alias is defined by Algorithm 6.1.

Algorithm 6.1 Algorithm of function commit_alias.
function commit_alias((𝕤,𝕡), 𝕒, ℓ)

𝕤′ ← 𝕤
𝕡′ ← 𝕡
for all mappings 𝕧 ↦ ℛ in 𝕡 do

if may_aliasD(𝕤, 𝕒, ℓ, 𝕧, size(ℛ)) then
𝕤′ ← result of writing ℛ([0, size(ℛ)[) to 𝕤′ at address 𝕧 in the semantics of 𝔻♯
𝕡′ ← 𝕡′[𝕧 ← ⊥]

return (𝕤′,𝕡′)

The detailed semantics of memory reads is given in Figure 6.5.

6.3.4 Abstract semantics of statements

Wenow define the abstract semantics of statements, J𝑠K♯St ∶ 𝕊𝕥♯(𝔻♯) → 𝕊𝕥♯(𝔻♯). This abstract semantics
extends J⋅K♯D, the abstract semantics of 𝔻♯, with an abstract points-to map, while remaining sound with
regard to the concrete semantics J⋅K.

For most statements, the abstract semantics J𝑠K♯St is identical to the semantics of 𝔻♯ and does not
modify the abstract points-to map, that is, J𝑠K♯St(𝕤,𝕡) = (J𝑠K♯D𝕤, 𝕡). The two exceptions are memory
write and memory allocation.

Memory writes Memory writes are performed as follows:

6.3. Staged points-to predicates 83

ℰJ𝑒1K♯St(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
ℰJ𝑒2K♯St(𝕤1,𝕡1) = (𝕧, (𝕤2,𝕡2)) ∃𝕒0 ∈ dom(𝕡2), 𝕤2 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡2(𝕒0))[

ℛ = 𝕡2(𝕒0) ℛ′ = ℛ[[𝕒−𝕒0, 𝕒−𝕒0+ℓ[← 𝕧]J∗ℓ𝑒1 ∶= 𝑒2K♯St(𝕤,𝕡) = (𝕤2, 𝕡2[𝕒0 ← ℛ′])

ℰJ𝑒1K♯St(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
ℰJ𝑒2K♯St(𝕤1,𝕡1) = (𝕧, (𝕤2,𝕡2)) ∀𝕒0 ∈ dom(𝕡2),¬(𝕤2 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡2(𝕒0))[)

(𝕤3,𝕡3) = commit_alias((𝕤2,𝕡2), 𝕒, ℓ) should_retainD(𝕤3, 𝕒) = (true, 𝑖, 𝑛)J∗ℓ𝑒1 ∶= 𝑒2K♯St(𝕤,𝕡) = retain(𝕤2,𝕡2, 𝕒, ℓ, 𝕧)

ℰJ𝑒1K♯St(𝕤,𝕡) = (𝕒, (𝕤1,𝕡1))
ℰJ𝑒2K♯St(𝕤1,𝕡1) = (𝕧, (𝕤2,𝕡2)) ∀𝕒0 ∈ dom(𝕡2),¬(𝕤2 ⊨ [𝕒, 𝕒+ℓ[⊆ [𝕒0, 𝕒0+size(𝕡2(𝕒0))[)

(𝕤3,𝕡3) = commit_alias((𝕤2,𝕡2), 𝕒, ℓ) should_retainD(𝕤3, 𝕒) = false

J∗ℓ𝑒1 ∶= 𝑒2K♯St(𝕤,𝕡) = (J∗ℓ𝑒1 ∶= 𝑒2K♯D𝕤3, 𝕡2)

Figure 6.6: Abstract semantics of memory writes in 𝕊𝕥♯(𝔻♯).

• if the region written is contained in one of the destination regions of the staged points-to predi-
cates, then the write is performed in that region.

• Otherwise, all staged points-to predicates that may alias with the region written are committed
to memory, and then a new points-to predicate is added to represent the write, if possible (that is,
if should_retainD returns true). Otherwise, the write is performed in the parameter domain 𝔻♯.

These rules are expressed in full in Figure 6.6.

Memory allocation The abstract operator J𝑥 ∶= malloc𝑡 (𝑒)K♯St for memory allocation is defined as
follows. It uses the allocation semantics of the subdomain 𝔻♯, but in addition, creates a new region in
the abstract points-to map and fills it with a fresh, unconstrained abstract value. Formally, it is defined
by the following rule:

ℰJ𝑒K♯St𝕤 = (𝕧ℓ, (𝕤1,𝕡1)) ∃ℓ ∈ ℕ, 𝕤1 ⊨ 𝕧ℓ = ℓJ𝑥 ∶= malloc𝑡 (𝑒)K♯D𝕤1 = 𝕤2 ℰJ𝑥K♯D𝕤2 = (𝕒, 𝕤3) ℛ = [[0, ℓ[↦ 𝕧] 𝕧 freshJ𝑥 ∶= malloc𝑡 (𝑒)K♯St(𝕤,𝕡) = (𝕤3, 𝕡1[𝕒 ← ℛ])

Memory allocation when 𝔻♯ = 𝕊♯ When the parameter domain is 𝕊♯, we slightly change its abstract
semantics of memory allocation in order to gain precision: we no longer require that the allocated type
be compatible with any value. This check was necessary for the abstract semantics of 𝕊♯ to preserve
typing, as discussed in Example 5.9. But in 𝕊𝕥♯(𝕊♯), it becomes redundant with the added points-to
predicate; the type checking is not suppressed, but delayed until the staged predicate is committed.
This can be seen in Section 6.3.2 above: n has type node.(0)∗, even though it points to an unconstrained
value (i.e. a value that is not necessarily in the interpretation of type node). While this makes the state
ill-typed, it is still sound with respect to the concrete semantics.

84 CHAPTER 6. Retained and staged points-to predicates

Abstract join

As with retained points-to predicates, staged points-to predicates are approximated away before join.
Only, in this case, the approximation consists in committing them, instead of dropping them. For this
purpose, we define an auxiliary function “commit_all” that commits all points-to predicates to the un-
derlying state.

Definition 6.15 (commit_all function). The function commit_all ∶ 𝕊𝕥♯(𝔻♯) → 𝔻♯ is defined as follows:
the abstract state commit_all(𝕤,𝕡) is the result of the following algorithm: for every points-to predicate
𝕧 ↦ ℛ in 𝕡, write 𝕧 to 𝕤 according to the abstract semantics of memory writes in 𝔻♯, and drop that
points-to predicate from 𝕡.
Definition 6.16 (Valid two-way renamings in 𝕊𝕥♯(𝔻♯)). Given (𝕤1,𝕡1), (𝕤2,𝕡2) ∈ 𝕊𝕥♯(𝔻♯), a valid two-
way renaming between them is any valid two-way renaming between 𝕤1 and 𝕤2.
Definition 6.17 (Abstract join in 𝕊𝕥♯(𝔻♯)). Let 𝕩1 = (𝕤1,𝕡1) and 𝕩2 = (𝕤2,𝕡2) be two elements of

𝕊𝕥♯(𝔻♯). Let Ψ ⊆ (𝕍 ♯)3 be a valid two-way renaming between 𝕩1 and 𝕩2. The abstract join ⊔St,Ψ ∶
𝕊𝕥♯(𝔻♯) × 𝕊𝕥♯(𝔻♯) → 𝕊𝕥♯(𝔻♯) is defined as:

𝕩1 ⊔St,Ψ 𝕩2 = (commit_all(𝕩1) ⊔St,Ψ commit_all(𝕩2), [])
The widening is defined similarly:

Definition 6.18 (Widening in 𝕊𝕥♯(𝔻♯)). Let 𝕩1 = (𝕤1,𝕡1) and 𝕩2 = (𝕤2,𝕡2) be two elements of 𝕊𝕥♯(𝔻♯).
LetΨ ⊆ (𝕍 ♯)3 a valid two-way renaming between 𝕩1 and 𝕩2. Thewidening⊔𝕊𝕥♯,Ψ ∶ 𝕊𝕥♯(𝔻♯)×𝕊𝕥♯(𝔻♯) →
𝕊𝕥♯(𝔻♯) is defined as:

𝕩1 ∇R,Ψ 𝕩2 = (commit_all(𝕤1,𝕡1) ∇D,Ψ commit_all(𝕤2,𝕡2), [])
This widening does not result in infinite ascending chains, which we can justify with an argument
similar to the one used for ∇R.

Abstract inclusion

Definition 6.19 (Valid renamings in 𝕊𝕥♯(𝔻♯)). Given 𝕩1 = (𝕤1,𝕡1) and 𝕩2 = (𝕤2,𝕡2) two elements of
𝕊𝕥♯(𝔻♯), a valid renaming from 𝕩2 to 𝕩1 is any valid renaming from 𝕤2 to 𝕤1.
Definition 6.20 (Abstract inclusion in 𝕊𝕥♯(𝔻♯)). The abstract inclusion ⊑St,Φ ⊆ 𝕊𝕥♯(𝔻♯) × 𝕊𝕥♯(𝔻♯) is
defined as follows: given 𝕩1 = (𝕤1,𝕡1) and 𝕩2 = (𝕤2,𝕡2) two elements of 𝕊𝕥♯(𝔻♯) and Φ ∶ 𝕍 ♯ → 𝕍 ♯ a
valid renaming from 𝕩2 to 𝕩1:

𝕩1 ⊑St,Φ 𝕩2 ⟺ 𝕡2 = [] ∧ commit_all(𝕤1,𝕡1) ⊑D,Φ 𝕤2

As with retained predicates, the join and inclusion operations could be more precise. In fact, the
join and inclusion on points-to predicates described in Section 6.2.3 for retained points-to predicates
can be applied to staged points-to predicates as well. However, as with retained points-to predicates,
we preferred to keep our implementation simple and more conservative as the precision gains did not
seem to justify the added complication to the analysis (see experiments Section 7.3).

6.3.5 Soundness of the abstract semantics

In essence, the staged points-to predicate abstract domain 𝕊𝕥♯(𝔻♯) only delays memory writes, as long
as aliasing relations permit.

6.4. Combining retained and staged points-to predicates 85

For this reason, its abstract semantics is sound, but well-typedness is preserved only in abstract
states where the staged predicates have been committed, i.e., states whose points-to map is empty.

Theorem 6.4 (Soundness of the abstract semantics of 𝕊𝕥♯(𝔻♯)). Let (𝕤,𝕡) ∈ 𝕊𝕥♯(𝔻♯) and P ∈ stmt.
Suppose that for all (𝑠,𝓋) ∈ γSt(𝕤,𝕡), 𝑠 is well typed under 𝓋. Let (𝕤′,𝕡′) = JPK♯St(𝕤,𝕡). Then:

(JPK ∘ untyp ∘ γSt)(𝕤) ⊆ (untyp ∘ γSt)(𝕤′,𝕡′).
In addition, if dom(𝕡′) = ∅, then for all (𝑠′,𝓋′) ∈ γSt(𝕤′,𝕡′), 𝑠′ is well typed under 𝓋′.

The fact that well-typedness is preserved (when the abstract points-to map is empty) is analogous to
preservation theorems in type systems, which state that an evaluation step preserves the well-typed
nature of a term.

Since only the abstract states with an empty points-to maps are sound abstractions of the concrete
states, our analyzer makes sure to commit any remaining staged points-to predicate after computing
the abstract semantics of a program. This way, if the analysis terminates without any alarm, it verifies
the spatial memory safety and preservation of type invariants.

6.4 Combining retained and staged points-to predicates

In practice, we shall use the retained and staged points-to predicates, as well as the type-based shape
domain:

Definition 6.21 (Type-based shape domain with points-to predicates). We let 𝔽 ♯ denote the abstract
domain consisting in 𝕊♯, used as the parameter of ℝ♯, in turn used as the parameter of 𝕊𝕥♯:

𝔽 ♯ = 𝕊𝕥♯(ℝ♯(𝕊♯))
The set of abstract values of 𝔽 ♯ is the same as 𝕊♯: 𝕍F = 𝕍St = 𝕍 ♯ × 𝕋 ♯.

6.5 Conclusion

After discussing the limitations of the type-based shape domain regarding the need to retain non type-
related predicates and to allow temporary violations of typing invariants, we proposed two new abstract
domains to mitigate them. These abstract domains consist in parameterized abstractions which use
points-to predicates to either refine (in the case of retained points-to predicates) or modify (in the case
of staged points-to predicates) the concrete memory states represented by an abstract state.

In the context of machine code analysis, Balakrishnan and Reps introduced the recency abstrac-
tion [BR06]. Similarly to some context-sensitive pointer analyses, memory regions allocated dynami-
cally are abstracted by their allocation site. However, this abstraction is made more precise by distin-
guishing the most recently allocated region from other regions allocated at the same site.

The idea of distinguishing the most recently allocated regions is in a way similar to the points-to
predicates, except that (retained and staged) points-to predicates distinguish the most recently accessed
memory regions, whether for reading, writing, or allocation, while the recency abstraction only dis-
tinguishes the most recently allocated one. Our abstractions could be parameterized by a domain that
abstracts heap objects by their allocation sites (rather than their types, as 𝕊♯ does), resulting in an ab-
straction similar to the recency abstraction.

For example, consider a program allocating and initializing several node objects by calling make in
a loop, and then calling merge on some of them (see code Figure 4.1). Balakrishnan and Reps’s recency
abstraction, like ours, would be able to verify that make initializes nodes in a way compliant with typing

86 CHAPTER 6. Retained and staged points-to predicates

invariants; however, it would fail to verify that the memory access parent->parent at line 20 is safe,
because *x is abstracted by the same abstract object as all other nodes (since all share the same allocation
site) and therefore the effect of the condition x->parent != 0 cannot be represented.

Chapter7
Practical analysis of C and machine code
programs

Outline of the current chapter

7.1 Analysis of C programs 88
7.1.1 Semantics of programs with arbitrary control flow 89
7.1.2 Under-specified behaviors . 90
7.1.3 Manual annotations required by the type-based shape domain 90

7.2 Analysis of executables 91
7.2.1 A semantics of machine code . 92
7.2.2 Incremental inference of control flow in the presence of dynamic jumps . 93
7.2.3 Delineation of functions . 96
7.2.4 Product with an “array of bytes” memory abstraction 98
7.2.5 Numerical abstraction . 100

7.3 Experimental evaluation 100
7.3.1 Research questions . 100
7.3.2 Methodology . 101
7.3.3 Results . 101
7.3.4 Discussion and conclusions . 104

7.4 Related work on static analysis of low-level code 104
7.4.1 Analysis of machine code . 104
7.4.2 Analysis of low-level C . 105

So far, we have defined our analysis on the simple While-memory language. We now turn to real-
world programs. In this thesis, we focus on C and machine code. We describe in Section 7.1 how we
construct our analysis of C programs. We then turn to machine code programs, and define a semantics
for them (Section 7.2.1), assuming an intermediate representation of assembly instructions in While-
memory augmented with control flow jumps. Section 7.2 then describes the analysis of machine code,
in particular the inference of control flow. We then describe the experiments we carried out to evaluate
the efficiency and effectiveness of our analysis, on both C and machine code programs, in Section 7.3.
Finally, Section 7.4 covers existing works on static analysis of low-level code.

87

88 CHAPTER 7. Practical analysis of C and machine code programs

7.1 Analysis of C programs

Our static analysis is implemented as part of Codex, an abstract interpretation library developed at CEA.
Codex is written in the OCaml programming language, and provides various numerical and memory
abstractions. The implementation of our full static analysis using physical types and retained and staged
points-to predicates amounts to 3,300 source lines of code (SLOC). It is common to both C and machine
code analysis tools. It exports an interface that consists essentially of the operators of the abstract
semantics of While-memory. We implemented the abstract domains 𝕊♯ and 𝔽 ♯, parameterized by the
choice of a numerical abstract domain.

The C analysis is implemented as a module of the Frama-C tool, that uses the Codex library. We
call the resulting tool Frama-C/Codex. Frama-C is an open-source platform dedicated to the analysis of
C programs. It facilitates the development of program analyses by handling the parsing of C code and
proposing a library to iterate on the resulting AST. Its modular architecture allows to develop analyses
as independent plugins.

The Frama-C module exploiting the Codex library to analyze C programs consists of 2,817 SLOC.
Conceptually, it translates the input C program into a While-memory program, and executes the ab-
stract semantics of that program.

The following adaptations are required for the translation from C to While-memory:

• Function calls are inlined (full context-sensitivity); thus we do not handle recursive functions.
Function calls could be more finely managed by introducing a stack abstraction, but this is not
relevant to our goal of verifying memory-related properties on sufficiently small programs with-
out recursive functions.

• Local variables could be translated into elements of 𝕏, in such a way that two distinct variables are
associated to distinct variables. While this method is the simplest, it does not allow local variables
to have an address—e.g., the expression &x should evaluate to the address of variable x. For this
reason, we consider local variables to be stored in the heap, but each at a set of special addresses,
e.g., 𝔸x ⊆ 𝔸 is the set of (contiguous) addresses holding variable x. If x and y are distinct variables,
then 𝔸x ∩𝔸y = ∅. Scope-local variables (e.g., in a function) are allocated at the beginning of their
scope and freed at the end.

• Floating-point computations could be handled by using a numerical abstraction with floating-point
support, but since we had no floating point case studies and numerical analyses are an indepen-
dent issue, our implementation over-approximates floating-point operations by fully unknown
values.

• Data structures are handled in specific ways: accesses in struct and union lvalues are translated
to the corresponding pointer arithmetic; enum types are translated to integers. Note that this
translation of access paths to pointer arithmetic only depends on the declared C types, as is the
case in the compilation process of a usual compiler; the translation to While-memory does not
involve our system of physical types at any point; those only matter at the time of the analysis
(see below Section 7.1.3).

• Structure fields with a size that is not a multiple of one byte, which the C standard calls bit-
fields, are currently not supported because the granularity of address type offsets in physical
types is one byte. In principle, however, pointer offsets could easily be made bit-precise, and the
implementation could be improved accordingly.

• Dynamic memory allocation is handled by translating calls to the malloc standard function into
the malloc While-memory statement. Calls to free are translated as no-ops. Calls to calloc or
realloc can be translated in terms of malloc.

7.1. Analysis of C programs 89

if(b)
goto L1;

do {
x--;

L1:
y += 3 * x + 1;

} while (x > 0);

x = y;

Figure 7.1: CFG not directly translatable to While-memory.

7.1.1 Semantics of programs with arbitrary control flow

In C, the control flow may be more complex than in While-memory. Constructs like switch state-
ments, for loops or do { …} while loops can be easily translated into While-memory control flow
commands, but this is not true when goto or break statements are involved, as in the program example
of Figure 7.1.

For this reason, in reality our tool does not translate the C program to a single While-memory
statement, but to a control flow graph (CFG). In the context of this thesis, a CFG is a graph whose nodes
are program locations and whose edges are labelled with abstract semantic operators:

Definition 7.1 (Control flow graph). We denote as ℒ the set of all program locations in the C program
P. Then, cfg[P] ∈ 𝒫(ℒ × (𝔽 ♯ → 𝔽 ♯) × ℒ) gives the edges of the control flow graph of P as a set of triples
(ℓ1, F♯, ℓ2), where ℓ1 and ℓ2 are program locations and F♯ ∶ 𝔽 ♯ → 𝔽 ♯ is the abstract semantics of the
program between locations ℓ1 and ℓ2. There is at most one edge between two locations.

This CFG can be obtained by a simple process: first, transforming the C program into a graph of
C statements, the edges between instructions being optionally labeled with a condition; then, each
C instruction is translated to a While-memory statement. The CFG, in the sense of Definition 7.1, is
obtained by labelling each edge from ℓ1 to ℓ2 with the semantics of the statement at ℓ1, possibly refined
by a condition.

We associate to each program location ℓ an abstract state 𝕤ℓ ∈ 𝔽 ♯. Additionally, we assume that the
graph cfg[P] possesses an initial and a final node, corresponding to locations ℓ0 and ℓ𝑓 , respectively.
Finally, we assume 𝕤0 to be a sound abstraction of the initial states at ℓ0. The abstract semantics of a
program P is then defined by the equation system:

∀ℓ ∈ ℒ, 𝕤ℓ = {
𝕤0 if ℓ = ℓ0
⨆

(𝑖,F♯,ℓ)
F♯(𝕤𝑖) otherwise

The solution of this equation system can be over-approximated by the standard process [CC77] of
computing a post-fixpoint using the abstract join and widening operators of the abstract domain (Sec-

90 CHAPTER 7. Practical analysis of C and machine code programs

tion 3.4.3). This method of computing abstract semantics has been present since the beginning of ab-
stract interpretation, introduced by Cousot and Cousot [CC77]. In a separate publication [Cou77], P.
Cousot introduced an efficient method of computation by chaotic iterations. This method has been fur-
ther developed by Bourdoncle [Bou93] who introduced methods to chose suitable widening strategies
so as to ensure termination while preserving precision, on arbitrary control flow graphs. A didactic
account of the solving method is given in [Min17, Section 3.5.3].

7.1.2 Under-specified behaviors

The official specification of the C language [IsoC18] does not entirely specify the behavior of programs:
some cases are left unspecified, either because they depend on the architecture, or because compiler
optimizations may favor some choices in order to gain efficiency.

The list of not fully specified behaviors [IsoC18, Annex J] distinguishes four kinds of incomplete
specifications:

• Undefined behaviors are situations in which the standard does not impose any requirement about
what should happen. Examples include null pointer dereference, or conversion of an integer value
that is outside of the range that can be represented by the destination type, or pointer conversion
producing a pointer with an incorrect alignment. Since an undefined behavior situation gives
absolutely no guarantees about the behavior of the program, they are considered to be errors,
except when additional assumptions can be made on the compiler and hardware.

• Unspecified behaviors are cases where the standard provides several possibilities but does not
impose one of them. The order of evaluation of binary operator operands is an example of un-
specified behavior, or the value of padding bits.

• Implementation-defined behaviors are unspecified behaviors that should be documented by each
implementation of the language, such as the accuracy of floating-point operations, or the result
of converting a pointer into an integer.

• Finally, locale-specific behaviors are behaviors dependent on linguistic conventions, mostly about
output format or character sets.

Our static analysis is a refinement of the standard, in the sense that:

• It implements everything the standard mandates, or documents it when it is not the case;
• It makes one of the available choices for each unspecified behavior, and documents that choice.

For example, by nature, translating physical types from C types requires assumptions about the archi-
tecture word size and endianness, and the number of padding bytes between fields.

Finally, the static analysis will warn about undefined behaviors, with two exceptions. Since tem-
poral memory safety is out of our scope, accessing an object outside of its lifetime is not detected; and
some pointer comparisons that standardly result in undefined behavior are not always detected. In-
deed, the behavior is undefined when “Pointers that do not point to the same aggregate or union (nor
just beyond the same array object) are compared using relational operators” [IsoC18, Annex J.2]. The
abstract domain 𝔽 ♯ is very imprecise in determining whether two pointers point to the same object, be-
cause it mostly groups heap objects by type. For this reason, we make an additional assumption on the
language implementation in this case, namely that execution continues normally, although the result
of the comparison is unspecified.

7.1.3 Manual annotations required by the type-based shape domain

To use the type-based shape domain, one must instantiate the type mapping ℳ ∶ 𝒩 → 𝕋 from type
names to physical types described in Chapter 4. Then, there are exactly two ways to introduce physical

7.2. Analysis of executables 91

types in the analysis of a program. The first is by specifying the types of global and local variables in
the initial state; the second is by annotating calls to malloc with a physical type.

Note that the set of physical types will usually be a refinement of the declared C types, but this is
not necessary: the analysis will be sound either way.

Annotation of malloc calls with physical types

As described in Section 5.4.3, in While-memory, memory allocation can be annotated with a type hint,
specifying what type the allocated region should be.

When translating C to While-memory, most of the time this annotation can be automatically in-
ferred from the C type of the lvalue the malloc is assigned to, if this C type is associated to a physical
type in the parameters of the analysis.

Example 7.1 (Automatic addition of a type hint to a memory allocation). Consider the following state-
ment:

struct node *x = malloc(sizeof(struct node));

The analysis can be parameterized to map the C type struct node to the physical type node from
Figure 4.2. In that case, the above statement will be translated into e.g.:

𝑥 ∶= mallocnode(16)
The analysis can also be parameterized to attribute the most generic types to the allocated region,
namely word16 in that case:

𝑥 ∶= mallocword16(16)

Note that type annotations do not influence the soundness of the analysis, only its precision.

7.2 Analysis of executables

Our analysis is not limited to C programs, but also handles machine code (also called binary code). The
machine code analysis is implemented as a module of the Binsec [Dav+16] tool: we name the result-
ing analyzer Binsec/Codex. Binsec is a machine code analysis platform that provides a set of utilities
and libraries to parse executable files, and disassemble the machine code they contain into an inter-
mediate representation. This lifting to an intermediate representation allows our analysis to operate
independently from the destination architecture of the executable: in our experiments, we were able
to analyze executables destined for the 32-bit x86 and ARM architectures (see Section 7.3 and Chap-
ter 10); Binsec also supports the RISC-V architecture. Binsec’s intermediate representation is very close
to While-memory, except for the fact that it permits control flow jumps (or simply jumps), both static
—i.e., jumps to a static code address— and dynamic, i.e., jumps whose destination is computed at run-
time. We first define a concrete semantics of machine code in Section 7.2.1, and then present how we
deal with dynamic jumps using a control flow abstraction in Section 7.2.2.

As in our C analyzer, function calls are inlined; however, since the notion of function is not part of
the semantics of machine code, we resort to a (sound) heuristic, detailed in Section 7.2.3.

The state of the system during the execution of a machine code program is abstracted as follows: 𝕏
is defined as the set of CPU registers; and the memory abstraction is a product between the type-based
shape domain and a more classical memory abstraction: we give more details below in Section 7.2.4.

92 CHAPTER 7. Practical analysis of C and machine code programs

jump ∶∶= stop
| goto 𝑒 (𝑒 ∈ expr)
| if 𝑒 then goto 𝑒1 else goto 𝑒2 (𝑒, 𝑒1, 𝑒2 ∈ expr)

Figure 7.2: Grammar of dynamic jumps.

7.2.1 A semantics of machine code

We first define the semantics of assembly instructions. For that purpose, we assume that all instructions
are representable in While-memory. For this to be true, we need to extend the language with control
flow jumps.

Definition 7.2 (While-memory statements with dynamic jumps). To account for dynamic jumps, we
define a new type of statement with the jump grammar in Figure 7.2. Further, we assume that every as-
sembly instruction can be decoded into aWhile-memory statement, followed by a jump, i.e., an element
of stmt × jump. We denote as ℐ ⊆ stmt × jump the set of instructions of the considered architecture.

This representation is suitable to translate all assembly instructions. For example, consider the x86
instruction je 0x000000bf, or “jump if equal”, whose semantics is the following: in x86, the flag ZF
is set if the last comparison instruction concluded to an equality, or if the last subtraction result was
zero. This instruction jumps to the instruction located at a relative offset of 0x000000bf to the current
location if the ZF flag is set; otherwise, it jumps to the next instruction. This would result in the following
element of stmt × jump (we separate the stmt element and the jump element by a semicolon):

skip;
if ZF = 1 then goto eip + 0xbf else goto eip + 6

The x86 “result is zero” flag, ZF, and the program counter eip, are both translated as While-memory
variables. When the jump condition is not met, the operand of goto is eip + 6, that is, the current
program counter plus 6, the size of the current instruction. In other words, when the condition is not
met, the jump target is the instruction immediately following the current one.

The dynamic jump that reads a location inmemory at address 0xdeadbeef and jumps to that address,
would be translated as:

skip;
goto ∗40xdeadbeef

Note that this representation of assembly instructions allows for complex semantics, including loops.
Indeed, the semantics of some instructions can involve loops, such as rep movsd in x86 assembly which
writes contiguous bytes in memory a specified number of times, or until the ZF flag is no longer set.

Instructions requiring a certain privilege level can also be expressed in While-memory, by storing
the current privilege level in a variable. Trying to execute an instruction without the required privilege
results in a transition to the error state, Ω. Unauthorized memory accesses and other kinds of run-time
errors, such as divisions by zero, also cause a transition to Ω. This is an abstraction of the real semantics
of most hardware architectures, in which such faults trigger a specific interrupt. However, we do not
need to model them more precisely, since our analysis verifies the absence of such run-times errors and
emits an alarm, should it fail.

We now define formally the semantics of such instructions:

Notation 7.1 (Program counter in machine code analysis). When analyzing machine code, we model
the program counter by a variable pc which contains the address of the current instruction. For brevity,

7.2. Analysis of executables 93

given 𝑠 = (σ, ℎ) ∈ 𝕊, we denote as 𝑠.pc the value σ(pc), and as 𝑠[pc ← 𝑣] the state with pc updated to 𝑣 :
𝑠[pc ← 𝑣] = (σ[pc ← 𝑣], ℎ).
Wedefine the semantics of an assembly instruction as the set of states reachable through that instruction:

Definition 7.3 (Semantics of assembly instructions). The semantics of assembly instructions J⋅Kℐ ∶
ℐ × 𝕊 → 𝒫(𝕊) are defined as follows:

JP, stopKℐS = ∅JP, if 𝑒 then goto 𝑒1 else goto 𝑒2KℐS = {𝑠′ | ∃𝑠 ∈ 𝒞J𝑒K(JPKS), 𝑠′ = 𝑠[pc ← ℰJ𝑒1K𝑠]}
∪ {𝑠′ | ∃𝑠 ∈ 𝒞J¬𝑒K(JPKS), 𝑠′ = 𝑠[pc ← ℰJ𝑒2K𝑠]}

The distinguishing feature of machine code is that it is stored in memory like data. We assume the
existence of a partial function decode ∶ 𝕊 × 𝔸 ⇀ stmt × jump that, given a state of the system and a
memory address, decodes the instruction at that location, if it is well-formed.

A machine code executable can be considered to be a partial mapping from addresses to data, i.e., an
element of 𝔸 ⇀ 𝕍1. Before running an executable, its contents are stored in memory. This operation
can be done by the operating system for user programs, or by a bootloader if the code runs directly
on the hardware. Once the executable contents are in memory, its execution is entirely defined by the
semantics of machine code. In the case of user programs running on an operating system, the execution
is generally interleaved with the execution of the kernel and of other programs, but that does not affect
the semantics of the program (except for input and output, which are an independent issue out of the
scope of this thesis).

Definition 7.4 (Semantics of machine code). The semantics of machine code is given by the transition
relation → ⊆ 𝕊 × (𝕊 ∪ {Ω}) defined as:

𝑠 → 𝑠′ ⟺ ∃𝑖 ∈ ℐ, decode(𝑠, 𝑠.pc) = 𝑖 ∧ 𝑠′ ∈ J𝑖Kℐ{𝑠}
Definition 7.5 (Reachable states semantics in machine code). The set of states reachable from a set of
initial states S0 in machine code is denoted as JS0Kbin and is:

JS0Kbin = {𝑠 ∈ 𝕊 | ∃𝑠0 ∈ S0, 𝑠0 →∗ 𝑠}
where →∗ is the transitive and reflexive closure of →.

7.2.2 Incremental inference of control flow in the presence of dynamic jumps

Control flow and data computation are strongly interdependent at the machine code level, since the
targets of dynamic jumps depend on the contents of registers andmemory. As a consequence, no control
flow graph can be known in advance for machine code programs. We therefore designed an analysis to
simultaneously compute abstractions of the CFG and of possible states at each program location.

For the simplicity of this presentation, we will for now consider that program locations are simply
code addresses:

Definition 7.6 (Program locations (simple)). In machine code analysis, the set of program locations,
denoted by ℒ, is the set of memory addresses:

ℒ = 𝔸.
Ourmachine code analysis computes two objects: a CFG, and an abstract state of 𝔽 ♯ at each program

location in that CFG.

94 CHAPTER 7. Practical analysis of C and machine code programs

001b00: 3d 00 00 00
001b04: 00 74 00 48
001b08: eb f8 89 c3
001b0c: f4 00 00 00

(a) Binary program.

001b00: 3d 00 00 00 00 cmp eax,0
001b05: 74 00 je 001b0a

001b07: 48 dec eax
001b08: eb fd jmp 001b00

(b) Partial CFG.

001b00: 3d 00 00 00 00 cmp eax,0
001b05: 74 00 je 001b0a

001b07: 48 dec eax
001b08: eb fd jmp 001b00

001b0a: 89 c3 mov ebx,eax
001b0c: f4 hlt

(c) Fixpoint CFG.

Figure 7.3: Incremental CFG inference.

Definition 7.7 (Control flow graph, and control flow invariant domain). Let 𝔾 be the set of control flow
graphs:

𝔾 = 𝒫(𝒫(ℒ × (𝔽 ♯ → 𝔽 ♯) × ℒ))
and ℂ be the set of partial functions from program locations to abstract states:

ℂ = ℒ ⇀ 𝔽 ♯.
An element of ℂ represents a global invariant on the program. Our machine code analysis computes an
element of 𝔾 × ℂ. The set 𝔾 × ℂ is an abstraction of a set of states via the concretization:

γflow(𝒢, ξ) = ⋃
(ℓ,F♯,ℓ′)∈𝒢

{𝑠 ∈ 𝕊 | ∃𝓋 ∶ 𝕍 ♯ → 𝕍 , (𝑠,𝓋) ∈ γE(ξ(ℓ))}

The computation of an invariant is a fixpoint computation, performed iteratively. Let us first de-
scribe it informally:

1. The analysis starts with an empty CFG.
2. If the CFG is empty, then the global invariant only maps ℓ0 (the initial location) to 𝕤0 (the initial

abstract state).
3. Otherwise, then a global mapping ξ, mapping each program location to an abstract state, is com-

puted by chaotic iterations based on the current CFG 𝒢.
4. At each program location ℓ, the abstract state ξ(ℓ) is used to compute the possible outgoing edges

from ℓ. New discovered edges are added to the CFG.
5. Steps 3 and 4 are repeated until reaching a fixpoint for the CFG.

Consider the example binary program in Figure 7.3a, the initial location being 0x1b00 and the initial
state being [eax ↦ {10}, ebx ↦ [−232, 232 − 1], pc ↦ {0x1b00}]. The inference of both control flow

7.2. Analysis of executables 95

and reachable states proceeds as follows. The first instruction is decoded, it is a comparison between the
value held by eax and zero (cmp eax,0). The successor instruction is a conditional jump (je 001b0a). If
the comparison resulted in an equality, the next instruction is 0x1b0a; otherwise, it is the successor of
the jump instruction, in that case 0x1b07. Here, since the equality is false, the analysis considers that
the instruction has only one successor (0x1b07). The two next instructions are a decrementation of eax
and a jump back to the initial location 0x1b00.

After these first steps, the graph is as shown in Figure 7.3b. To improve readability, we group in-
struction into basic blocks and do not represent edges from one instruction to the next inside a basic
block. At this point, the set of possible values for register eax at location 0x1b00 is computed as being
in the interval [0, 10]. As a consequence, the conditional jump can now be taken and a new edge is
added to the CFG with destination 0x1b0a. Figure 7.3c shows the final graph. This graph is a fixpoint
of the edge discovery process, since there are no edges left to add (the halting instruction hlt has no
successor edges). Note that for simplicity’s sake, this example is a small loop coded using a conditional
jump, but the principle is the same for computed jumps, whose outgoing edges are determined by the
value analysis.

We now formalize this process.
We first abstract the instruction-decoding function into decode♯ ∶ 𝔽 ♯ × ℒ → 𝒫(stmt × jump) ⊎ {⊤},

such that decode♯(𝕤, ℓ) returns the decodings of ℓ in all the concrete states abstracted by 𝕤; if in one state
this decoding is undefined, then decode♯ returns ⊤:

decode♯(𝕤, ℓ) = {⊤ if ∃(𝑠,𝓋) ∈ γF(𝕤), decode(𝑠, ℓ) is undefined
{decode(𝑠, ℓ) | (𝑠,𝓋) ∈ γF(𝕤)} otherwise

Finally, the operator 𝔧𝔲𝔪𝔭𝔰 ∶ 𝔽 ♯ × stmt × jump → 𝒫((𝔽 ♯ → 𝔽 ♯) × ℒ) computes the possible outgoing
edges from an instruction, given an abstract state:

𝔧𝔲𝔪𝔭𝔰(𝕤, P, stop) = ∅
𝔧𝔲𝔪𝔭𝔰(𝕤, P, if 𝑒 then goto 𝑒1 else goto 𝑒2) = {(F♯, ℓ) | F♯ def= guardF ∘ ℰJ𝑒K♯F ∘ JPK♯F, ℓ ∈ γVF (ℰJ𝑒1K♯(F♯(𝕤)))}

∪ {(F♯, ℓ) | F♯ def= guardF ∘ ℰJ¬𝑒K♯F ∘ JPK♯F, ℓ ∈ γVF (ℰJ𝑒2K♯(F♯(𝕤)))}
Then, given a CFG 𝒢 and a function ξ ∈ ℂ mapping every node ℓ in 𝒢 to an abstract state, the set of
outgoing edges from ℓ is:

{(ℓ, F♯, ℓ′) | ∃(P, J) ∈ decode♯(ξ(ℓ), ℓ), (F♯, ℓ′) ∈ 𝔧𝔲𝔪𝔭𝔰(ξ(ℓ), P, J)}
All edges that were not present in 𝒢 are added. If for any ℓ ∈ dom(ξ), the result of decode♯(ξ(ℓ), ℓ) is ⊤,
then the analysis emits an error: the analyzed machine code may fail attempting to decode an ill-formed
instruction. This may also be caused by an imprecision in the analysis.

We are now able to define the abstract operator that grows the abstract CFG (steps 3 and 4). As
stated above (Section 7.1.1), step 3, namely inferring a sound abstract state at each program location
given a CFG, is standard. We denote as 𝔞𝔫𝔞𝔩𝔶𝔷𝔢 ∶ 𝔾 × 𝔽 ♯ → ℂ the function realizing this operation
from a CFG and an initial state.

Definition 7.8 (CFG iteration operator). The operator ℱ ∶ 𝔾 × ℂ → 𝔾 × ℂ is defined as follows:

• if there exists ℓ ∈ dom(ξ) such that decode♯(ξ(ℓ), ℓ) = ⊤, then the machine code may fail due to
an ill-formed instruction (also called “invalid opcode” error); the new CFG and state invariant are
completely imprecise:

ℱ(𝒢, ξ) = (⊤𝔾,⊤ℂ)

96 CHAPTER 7. Practical analysis of C and machine code programs

(In practice, the analysis emits an alarm indicating a possibly invalid opcode and stops.)
• Otherwise,

ℱ(𝒢, ξ) = (𝒢′, ξ′)
where

ξ′ = 𝔞𝔫𝔞𝔩𝔶𝔷𝔢(𝒢, ξ(ℓ0))
𝒢′ = 𝒢 ∪ {(ℓ, F♯, ℓ′) | ∃(P, J) ∈ decode♯(ξ′(ℓ), ℓ), (F♯, ℓ′) ∈ 𝔧𝔲𝔪𝔭𝔰(ξ′(ℓ), P, J)}

Definition 7.9 (Abstract semantics of the control flow domain). Given an abstract state 𝕤0 ∈ 𝔽 ♯, the
abstract semantics of machine code starting from 𝕤0 in 𝔾 × ℂ, denoted as J𝕤0K♯bin, is the fixpoint of
operator ℱ, starting from the element (∅, [ℓ0 ↦ 𝕤0]). The order on the elements of 𝔾 ×ℂ is defined as:

(𝒢1, ξ1) ⊑flow (𝒢2, ξ2) ⟺ 𝒢1 ⊆ 𝒢2

Note that the CFG thus inferred has at most one edge between two locations.
This approach is sound, in the sense that it infers a CFG that contains all possible reachable states:

Theorem 7.1 (Soundness of J⋅K♯bin). Given 𝕤0 ∈ 𝔽 ♯:

JγF(𝕤0)Kbin ⊆ γF(J𝕤0K♯bin)
Proof sketch. This fact can be proved ab absurdum: suppose that there exists a concrete execution trace,
i.e., a sequence of CFG edges, that is not contained in the CFG 𝒢 resulting from the fixpoint computation
described above, and consider the first edge of the trace not in 𝒢. This edge is necessarily in the result
of 𝔧𝔲𝔪𝔭𝔰. Indeed, it can be shown that 𝔧𝔲𝔪𝔭𝔰 always returns a superset of the possible outgoing edges
in a given (partial) CFG, since the abstract semantics of the state domain 𝔽 ♯ is sound. Therefore 𝒢 is
not a fixpoint, which contradicts our hypothesis.

The CFG computation always terminates because the set of program locations is finite (and there is
at most one edge between two program locations), but it may take a very long time. However, we did
not find it necessary to design convergence acceleration techniques for the CFG inference, since in our
experiments reaching the control flow fixpoint never was a performance bottleneck of the analysis.

7.2.3 Delineation of functions

Another difficulty specific to machine code is the absence of a well-defined notion of function: function
calls are nothing more than control flow jumps1.

Yet, detecting function calls is crucial to perform a context-sensitive analysis, i.e., an analysis that
analyzes the code of functions in their calling context. We perform a context-sensitive analysis for
precision reasons. Consider the function double in Figure 7.4a which returns its arguments multiplied
by 2 and is called twice by the main function. If the analysis is not context-sensitive, then the CFG
resembles that of a loop (Figure 7.4b). As a consequence, our analysis will merge the possible stacks,
and, since the argument of double is pushed onto the stack, the analysis will be imprecise. On the
contrary, if each call is analyzed in context (Figure 7.4c), the analysis will be more precise on the function
argument, and thus on the program as a whole.

We therefore enrich program locations with a call stack (see Figure 7.4c), represented as a finite
sequence of code addresses:

1x86 assembly has dedicated call and ret instructions, but there is no guarantee that functions calls and function returns will
not be compiled into other jump instructions; and in fact it is often not the case due to call stack optimizations.

7.2. Analysis of executables 97

double:
001200: mov eax, [esp+4]
001204: shl eax, 1
001206: ret

...

main:
001216: mov eax, 0x18
00121b: push eax
00121d: call 0x1200 ; <double>
001220: push eax
001222: call 0x1200 ; <double>
001225: hlt

(a) Assembly program.

0x1216: mov eax, 0x18
0x121b: push eax
0x121d: call 0x1200

0x1200: mov eax, [esp+4]
0x1204: shl eax,1
0x1206: ret

0x1220: push eax
0x1222: call 0x1200

0x1225: hlt

(b) CFG without call stacks: the two
function calls are indistinguishable
from a loop.

0x1216, ⟨⟩: mov eax, 0x18
0x121b, ⟨⟩: push eax
0x121d, ⟨⟩: call 0x1200

0x1200, ⟨0x121d⟩: mov eax, [esp+4]
0x1204, ⟨0x121d⟩: shl eax,1
0x1206, ⟨0x121d⟩: ret

0x1220, ⟨⟩: push eax
0x1222, ⟨⟩: call 0x1200

0x1200, ⟨0x1222⟩: mov eax, [esp+4]
0x1204, ⟨0x1222⟩: shl eax,1
0x1206, ⟨0x1222⟩: ret

0x1225, ⟨⟩: hlt

(c) CFG with call stacks: the two
function calls are identified and
can be analyzed in context.

Figure 7.4: Illustration of the inferred CFGswith andwithout including a call stack in program locations.

Definition 7.10 (Context-sensitive program locations). In machine code analysis, a program location is
a pair consisting of:

• a code address in 𝔸;
• and a call stack, i.e., a finite sequence of code addresses.

The set of program locations is denoted by ℒ:

ℒ = 𝔸 × 𝔸∗.
During the analysis, a function call causes the calling address to be added to the code stack; on the
contrary, returning from a function causes the topmost element of the call stack to be popped. This
enables the analysis to be fully context-sensitive.

The question remains of how function calls and returns are identified. When compiled to assembly
code, function calls are translated as jumps that are not easy to distinguish from e.g., jumps in a loop.

We resort to a simple, yet efficient heuristic: function boundaries are identified using the symbol
table present in the executable, if any. We model it by a set of function names 𝒩fun and a function
sym ∶ 𝔸 ⇀ 𝒩fun representing the symbol associated to a code address.

Definition 7.11 (Machine code semantics with call stacks). The transition relation→′ ⊆ (𝕊×ℒ)×(𝕊×ℒ)
is defined as follows. Given 𝑠, 𝑠′ ∈ 𝕊, given (ρ,σ), (ρ′,σ′) ∈ ℒ, the relation (𝑠, (ρ,σ)) →′ (𝑠′, (ρ′,σ′))
holds if and only if 𝑠 → 𝑠′ and ρ = 𝑠.pc and ρ′ = 𝑠′.pc, and one of the following holds:

• sym(ρ) = sym(ρ′) and σ = σ′ (the destination location has the same call stack as the source
location).

• sym(ρ) ≠ sym(ρ′) and σ = 𝑎1, 𝑎2,… , 𝑎𝑘 , ρ, 𝑎𝑘+1,… with 𝑎1,… , 𝑎𝑘 ≠ ρ′, and σ′ = ρ, 𝑎𝑘+1,…, i.e.,
if the destination address can be found in the call stack of the source location, then the jump
is considered to be a return from one or more functions2, and the corresponding addresses are
popped from the call stack.

2Due to compiler optimizations, one instruction may return from several instructions at once (sibling call optimization).

98 CHAPTER 7. Practical analysis of C and machine code programs

• sym(ρ) ≠ sym(ρ′), and ρ′ ∉ σ and σ′ = ρ,σ, i.e., the jump is considered to be a function call, and
the calling address is added to the call stack.

The semantics→′ corresponds to→with all functions (in the sense of the symbol table) inlined. Indeed,
the two semantics are identical up to call stacks:

Theorem 7.2. Given 𝑠, 𝑠′ ∈ 𝕊:

𝑠 → 𝑠′ ⟺ ∃σ,σ′, (𝑠, (𝑠.pc,σ)) →′ (𝑠′, (𝑠′.pc,σ′))

Proof. The implication from right to left is true by definition. To prove the converse implication, take
any σ ∈ 𝔸∗. Depending on whether sym(𝑠.pc) equals sym(𝑠′.pc) or not, it is easy to construct σ′ such
that (𝑠, (ρ,σ)) →′ (𝑠′, (ρ′,σ′).

The CFG construction described in Section 7.2.2 does not change: the 𝔧𝔲𝔪𝔭𝔰 function is easily
adapted to work with call stacks. The analysis still terminates as the call stack size remains bounded
(since we assume the absence of recursive calls).

While symbol tables are not guaranteed to be correctly generated by the compiler, our experiments
find that this method is effective at delineating function contexts (Section 7.3 and Chapter 10). Note also
that this heuristic influences only the precision of the analysis, and not its soundness. In the absence
of a symbol table, another way to delineate functions may have to be devised if the precision is not
satisfactory, possibly via manual annotations or automated heuristic [ASB17].

7.2.4 Product with an “array of bytes” memory abstraction

In machine code, unlike in C code, the concept of variables is absent: except for data that is stored
in registers, every data access involves dereferencing an address. For example, C compilers typically
translate accesses to local variables as memory accesses to the stack, the stack being simply a region in
the program address space; and global variables are stored in another such memory region.

The principle behind the type-based shape domain is to abstract the memory by a type invariant.
However, this abstraction is not well-suited to represent the stack and global variables, for the following
reasons: firstly, on the stack, one memory location will typically hold various, unrelated values over
time; these values cannot be precisely abstracted by one type. Secondly, our type-based abstraction is
flow-insensitive, whereas a precise analysis of local variables require a flow-sensitive representation of
the stack.

Finally, the stack and global variables are stored in a bounded, statically-known memory region,
and therefore practical to represent by a non-summarizing abstraction. For all these reasons, we use a
different abstraction for the stack and global variables than the type-based abstraction used for the rest
of the heap. This abstraction represents memory as an “array of bytes”, that is, it fully enumerates all
memory cells.

We denote as 𝔸F the set of addresses holding the stack and global variables, and 𝔸T = 𝔸 ⧵ 𝔸F. (F
stands for “fixed” and T stands for “typed”.)

In addition, we modify the definitions of physical types so that only 𝔸T is labelled with types, and
pointer types to point into 𝔸T. Table 7.1 shows the modified definitions.

The fully enumerative memory abstraction (also called “flat model” abstraction) is defined thus:

Definition 7.12 (“Flat model” memory domain). The abstract domain 𝕄♯ is defined as:

𝕄♯ = 𝔸F → 𝕍F

7.2. Analysis of executables 99

Object defined New definition

Labellings (Definition 4.2) 𝕃 = 𝔸T → 𝕋A
Addresses covered by a type (Definition 4.7) addrℒ(𝑡) = ⋃size(𝑡)−1

𝑖=0 {𝑎 ∈ 𝔸T | ℒ(𝑎) ⪯ 𝑡.(𝑖)}
Interpretation of pointer types (Definition 4.8) ⦇ 𝑡.(𝑘)∗ ⦈ℒ,𝓋 = {0} ∪ {𝑎 ∈ 𝔸T | ℒ(𝑎) ⪯ 𝑡.(𝑘)}
Well-typed state (Definition 4.10) ∀𝑎 ∈ 𝔸T, (∃𝑡 ∈ 𝕋 ,ℒ(𝑎) = 𝑡.(0))

⟹ ℎ[𝑎..𝑎+size(𝑡)] ∈ ⦇ 𝑡 ⦈ℒ,𝓋

Table 7.1: Definitions modified in order to restrict the type-based abstraction of memory to 𝔸T (modi-
fications shown in red).

with concretization:

γM ∶ 𝕄♯ → 𝒫((𝔸F → 𝕍1) × (𝕍 ♯ → 𝕍))
γM(𝕙F) = {(ℎF,𝓋) | ∀𝑎 ∈ 𝔸F, ℎF(𝑎) = 𝓋(𝕙F(𝑎))}

This abstraction is finite, since 𝔸F is. In practice, since representing each memory byte separately is
inefficient, it uses a stratified representation of memory caching multi-bytes loads and stores, like in
[Min06]; and it does not track memory cells whose contents are not constrained by any predicate.

Definition 7.13 (Combined shape–fixed abstract domain). The combined shape–fixed abstract domain
𝔼♯ is defined as:

𝔼♯ = 𝔽 ♯ × 𝕄♯

with concretization:

γE ∶ 𝔼♯ → 𝒫(𝕊𝑡 × (𝕍 ♯ → 𝕍))

γE(𝕗 ,𝕞) =
⎧⎪
⎨⎪⎩
((σ, Γ, ℎ,ℒ), 𝓋)

||||||

∃ℎT ∈ ℍ, ((σ, Γ, ℎT,ℒ),𝓋) ∈ γF(𝕗),
∃ℎF ∈ ℍ, (ℎF,𝓋) ∈ γM(𝕞),
∀𝑎 ∈ 𝔸, ℎ(𝑎) = {ℎF(𝑎) if 𝑎 ∈ 𝔸F

ℎT(𝑎) otherwise

⎫⎪
⎬⎪⎭

The set of abstract values of 𝔼♯ (see Section 3.4.1) is the same as the set of abstract values of 𝔽 ♯:

𝕍E = 𝕍F = 𝕍S = 𝕍 ♯ × 𝕋 ♯

We do not give the full detail of the transfer functions of 𝔼♯; they are mostly trivial, except for the fact
that the abstract semantics of memory reads and writes use the semantic operators of either 𝔽 ♯ or 𝕄♯,
depending on which part of the heap is affected.

For example, storing the abstract value (𝕧, 𝕥) at address (𝕒, 𝕥𝑎) proceeds as follows:

• if 𝕥𝑎 is a pointer type, then the memory write is performed using the abstract memory write
operator of domain 𝔽 ♯.

• Otherwise, if 𝕒 ∈ 𝔸F, then the write is performed using the abstract memory write operator of
domain 𝕄♯.

• Otherwise, the resulting abstract state is completely imprecise (or, in practice, the analysis emits
an alarm).

100 CHAPTER 7. Practical analysis of C and machine code programs

7.2.5 Numerical abstraction

The numerical abstract domain that we use in our analyses (i.e., the instance of 𝔻num that we use)
consists mainly in non-relational intervals with congruence information (sometimes called strided in-
tervals [Bal07]), in product with a bitwise abstraction, i.e., an abstraction that attempts to retain the
effect of bit-level operations by representing a value as a sequence of bits, where each bit is abstracted
by an element of {0, 1, ?}, where “?” means “unknown”.

The abstraction we use is in fact able to retain a few relational predicates: for any two symbolic
variables 𝕧1 and 𝕧2, it is able to retain the predicate 𝕧1 ≤ 𝕧2 (recall that symbolic variables represent
immutable values). This is useful for bound checking on arrays whose length is symbolic. However, it
is not able to derive new inequalities, such as 𝕧1 + 1 < 𝕧2 + 1.

The abstraction of pointer offsets is slightly richer: a pointer offset is represented as a triple (𝑖, 𝑓 , 𝑛) ∈
𝕍 ♯ × 𝕍 ♯ × ℕ, where 𝑖 represents the index in the pointed array, 𝑓 represents the same index, but count-
ing from the end of the array, and 𝑛 represents the offset in the array element. The concrete offset 𝑜
represented by this triple is such that these two equations hold:

{ 𝑜 = 𝑖 ⋅ size(𝑡) + 𝑛
𝑓 = 𝑖 − 𝑠

for an offset in an array of type 𝑡[𝑠]. Non-array types are viewed as arrays of length 1, in which case
𝑖 = 0 and 𝑓 = −1.

This representation allows to check array bounds, even using non-relational numerical abstractions:
a pointer offset is in the bounds of the array if 𝑖 ≥ 0 and 𝑓 < 0. This abstraction was sufficiently precise
on our use cases (see Section 7.3 and Chapter 10) that we did not need to use a fully relational numerical
abstract domain.

7.3 Experimental evaluation

We evaluated the efficiency and the precision of our analysis, and the parametrization effort, by analyz-
ing a set of benchmark programs manipulating various data structures, some including complex sharing
patterns. We perform these analyses both on C source code and on compiled executables. Those struc-
tures include singly- and doubly-linked lists, AVL and red-black trees, directed graphs, and splay trees.
These experiments were presented, alongwith our type-based shape domain and the staged and retained
points-to predicates, in an article published at the VMCAI 2022 conference [NLR22].

These experiments evaluate the ability of our abstractions to verify spatial memory safety and type-
based structural invariants. While spatial memory safety is clearly a desirable property, the usefulness
of verifying type-based structural invariants has not been established yet. This will be the object of our
kernel verification experiments, described at length in Part II.

7.3.1 Research questions

RQ1 (Is our analysis is effective?) Is the type-based shape domain with retained and staged points-to
predicates effective to analyze real-world data-structure libraries? Our criterion will be the number of
programs analyzed without false alarms. An analysis without alarms means that we have successfully
verified 1. spatial memory safety, i.e., that all memory accesses are performed within the bounds of
allocated objects; and 2. preservation of structural invariants as defined by the well-typedness property
of states (Definition 4.10). While spatial memory safety is a property that can be defined independently
from physical types, structural invariants are relative to a set of types (more precisely type mapping, see
Section 4.2) which is a parameter of the analysis.

7.3. Experimental evaluation 101

RQ2 (Are retained and staged points-to predicates necessary?) Are retained and staged points-to pred-
icates necessary to keep sufficient precision? We evaluate their usefulness by running the analysis with
and without points-to predicates. Our implementation reunites retained and staged points-to predicates
in a single abstract domain. For this reason, they are either both enabled or both disabled.

RQ3 (Is our analysis efficient?) Does our type-based shape analysis scale well in practice? In particular,
does it scale better than shape analyses based on separation logic, which express stronger invariants at
the cost of handling disjunctions?

RQ4 (Is the annotation effort low?) What is the amount of manual annotation required to perform a
successful analysis? What we call annotations in the context of this analysis is the manually written
definitions of physical types. Since in practice for C programs, the physical types are a refinement of
the C types, an initial set of types can be automatically generated from the C source. We implemented
this automated generation. However, the structural invariants entailed by the automatically generated
set of types may not be strong enough for the analysis to terminate without alarms; in that case, the
types must be refined by e.g., adding some refinement predicates. For this reason, in our evaluation we
distinguish between the number of lines of annotations generated and the number of lines that added or
modified for the analysis to emit fewer or no false alarms.

7.3.2 Methodology

We ran our C analyzer, Frama-C/Codex, on all the C benchmarks from two shape analysis publications;
moreover, we compiled them using GCC 10.3.0 with different levels of optimizations, namely -O0, -O1,
-O2, and -O3, and analyzed the resulting executables with Binsec/Codex.

These benchmarks are challenging: the graph-* benchmarks from Li et al. [LRC15] were used to
verify unstructured sharing patterns; to complete this evaluation we add the functions uf_find, merge
and make from our running example of Figure 4.1 (benchmarks uf-*). The other benchmarks are from
Li et al. [Li+17] and were used to demonstrate scalability issues faced by shape analyzers. Both sets
of benchmarks were created to demonstrate shape analysis, which is a more precise abstraction than
the one we propose. They are thus suitable to evaluate ability to handle complex sharing patterns and
precision. We also use them to compare how our approach scales compared to separation logic-based
shape analysis, either standard or improved with the semantic-directed clumping from Li et al. [Li+17].

All analyses have been conducted on a standard laptop Intel Xeon E3-1505M 3 Ghz running Linux
5.10.81, with a 32GB RAM.We took the mean values between 10 runs, and report the mean (all standard
deviations were below 4%).

7.3.3 Results

Table 7.2 provides the results of the evaluation. Each benchmark consists in the analysis of one function,
possibly calling other functions. The benchmarks are grouped by the data structure they operate on;
we report the number of lines describing physical types (generated from existing types information, or
manually edited) shared by a group. Finally, the pre. column gives the number of lines of pre-conditions
for the verified function (e.g., that a pointer argument must not be null). The pre. annotations consist in
providing the types of the arguments (if any) of the function analyzed. The LOC column is the number
of lines of code of each function, excluding comments, blank lines and subroutines. The ratio of lines of
manual annotations per line of code for a group, goes from 0% to 7.8%, with a mean of 3.2% and median
of 2.7%.

The next columns in the table provide the time taken by the full analysis (in s), the number of alarms
of the full analysis (↦ column) and the analysis without the retained and staged points-to predicates

102 CHAPTER 7. Practical analysis of C and machine code programs

Benchmark
Annotations

LOC
C O0 O1 O2 O3

gen./ed./pre. Time / ↦ / ↦̸ Time/↦/↦̸ Time/↦/↦̸ Time/↦/↦̸ Time/↦/↦̸
sll-delmin

11 0
1 25 0.27 0 0 0.13 0 0 0.15 0 0 0.15 0 0 0.13 0 0

sll-delminmax 1 49 0.30 0 0 0.19 0 0 0.17 0 0 0.17 0 0 0.16 0 0
psll-bsort

10 0
0 25 0.30 0 22 0.41 0 3 0.25 0 3 0.26 0 3 0.29 0 3

psll-reverse 0 11 0.28 0 2 0.10 0 1 0.13 0 1 0.10 0 1 0.10 0 1
psll-isort 0 20 0.29 0 2 0.34 0 1 0.34 0 1 0.32 0 1 0.33 0 1
bstree-find 12 0 1 26 0.27 0 0 0.14 0 0 0.13 0 0 0.15 0 0 0.16 0 0
gdll-findmin

25 5

1 49 0.50 0 0 0.41 0 0 0.39 0 0 0.41 0 0 0.42 0 0
gdll-findmax 1 58 0.55 0 0 0.33 0 0 0.22 0 0 0.21 0 0 0.20 0 0
gdll-find 1 78 0.56 0 0 0.15 0 0 0.15 0 0 0.14 0 0 0.14 0 0
gdll-index 1 55 0.53 0 0 0.32 0 0 0.33 0 0 0.30 0 0 0.29 0 0
gdll-delete 1 107 0.57 0 2 0.16 0 0 0.14 0 0 0.13 0 0 0.13 0 0
javl-find

45 12

2 25 0.35 0 0 0.23 0 0 0.28 0 0 0.18 0 0 0.19 0 0
javl-free 1 27 0.35 0 4 0.11 0 3 0.12 0 0 0.10 0 0 0.11 0 0
javl-insert 2 95 0.53 6 56 0.52 12 20 0.39 30 34 0.43 29 34 0.43 29 34
javl-insert-32× 2 95 16.68 192 1792 28.28 14 20 33.14 34 34 32.00 32 34 40.01 32 34
gbstree-find

23 5
1 53 0.58 0 0 0.38 0 0 0.40 0 0 0.56 0 0 0.59 0 0

gbstree-delete 1 165 0.81 0 0 0.90 0 0 0.72 0 0 0.67 0 0 0.66 0 0
gbstree-insert 1 133 0.55 0 7 0.26 0 0 0.21 0 0 0.23 0 0 0.24 0 0
brbtree-find

24 3
2 29 0.32 0 0 0.17 0 0 0.19 0 0 0.23 0 0 0.23 0 0

brbtree-delete 2 329 0.79 103 127 1.15 44 73 1.23 46 53 0.85 58 63 0.84 58 63
brbtree-insert 2 177 0.61 24 47 0.90 11 23 0.47 16 17 1.22 21 17 0.97 21 17
bsplay-find

22 1
1 81 0.53 0 18 0.25 0 7 0.23 0 7 0.23 0 7 0.23 0 7

bsplay-delete 1 95 0.72 0 38 0.45 0 11 0.44 0 10 0.44 0 10 0.44 0 10
bsplay-insert 1 101 0.57 0 18 0.25 0 7 0.25 0 7 0.25 0 7 0.25 0 7
graph-nodelisttrav

23 0

1 12 0.20 0 0 0.10 0 0 0.10 0 0 0.10 0 0 0.11 0 0
graph-path 1 19 0.21 0 14 0.15 0 5 0.16 0 0 0.14 0 0 0.16 0 0
graph-pathrand 1 25 0.22 0 10 0.13 0 0 0.21 0 0 0.12 0 0 0.11 0 0
graph-edgeadd 1 15 0.27 0 2 0.12 0 1 0.11 0 1 0.10 0 1 0.10 0 1
graph-nodeadd 1 15 0.26 0 2 0.10 0 1 0.08 0 1 0.09 0 1 0.10 0 1
graph-edgedelete 1 11 0.20 0 2 0.10 0 1 0.10 0 0 0.10 0 0 0.11 0 0
graph-edgeiter 1 22 0.23 0 0 0.13 0 0 0.11 0 0 0.12 0 0 0.12 0 0
uf-find

33 3
1 11 0.31 0 24 0.07 0 6 0.09 0 0 0.08 0 0 0.07 0 0

uf-merge 1 17 0.34 0 50 0.13 0 7 0.18 0 0 0.18 0 0 0.15 0 0
uf-make 0 9 0.31 0 4 0.05 0 3 0.06 0 3 0.07 0 3 0.06 0 3
Total verified 30 13 30 16 30 21 30 21 30 21

Table 7.2: Results of the evaluation

7.3. Experimental evaluation 103

(↦̸ column), for the C version of the code and the various binaries produced by GCC. For brevity, we
have omitted the time taken by the ↦̸ analysis in the benchmarks; on average this analysis takes 1.5%
less time for the C, and 20% less for binary code (maximum: 45%). The number of alarms is counted
differently in C (one possible alarm each time the analyzer evaluates a statement) and in binary (where
each alarm type is counted at most once per instruction), but in both, 0 alarms means that the analyzer
verified type-safety. We observe that the full analyzer succeeds in verifying 30 benchmarks (out of 34),
both in C and binary code. Removing the points-to predicates makes the analysis significantly less
precise, as only 13 benchmarks are verified in C, and between 16 (for -O0) and 21 (for -O1,-O2,-O3) in
binary code.

Annotation example

The C type declarations for the javl-* set of benchmarks are as follows:

typedef struct jsw_avlnode {
int balance; /* Balance factor */
int *data; /* User-defined content */
struct jsw_avlnode *link[2]; /* Left (0) and right (1) links */

} jsw_avlnode_t;

typedef struct jsw_avltree {
jsw_avlnode_t* root; /* Top of the tree */
size_t size; /* Number of items (user-defined) */

} jsw_avltree_t;

typedef struct jsw_avltrav {
jsw_avltree_t *tree; /* Paired tree */
jsw_avlnode_t *it; /* Current node */
jsw_avlnode_t *path[64]; /* Traversal path */
size_t top; /* Top of stack */

} jsw_avltrav_t;

The mapping ℳ from type names to physical types automatically generated from those type declara-
tions is the following:

ℳ =
⎡⎢⎢⎢⎢
⎣

int ↦ word4
avlnode ↦ int × int.(0)∗ × (avlnode.(0)∗)[2]
avltree ↦ avlnode.(0)∗ × int
avltrav ↦ avltree.(0)∗ × avlnode.(0)∗ × (avlnode.(0)∗)[64] × int

⎤⎥⎥⎥⎥
⎦

Wemodified it in the following way: we created an additional type name node_data, bound to type int:

ℳ ∶ node_data ↦ int

and replaced int.(0)∗ in avlnode with type {𝑥 ∶ node_data.(0)∗ | 𝑥 ≠ 0}:
ℳ ∶ avlnode ↦ int × {𝑥 ∶ node_data.(0)∗ | 𝑥 ≠ 0} × (avlnode.(0)∗)[2]

to improve precision. Indeed, this way, writing to an address of type node_data.(0)∗ can onlymodify the
data field of an AVL node; whereas writing to an address of type int.(0) potentially modifies regions of
type avlnode and avltree, because both have a field of type int. This happened during the analysis and

104 CHAPTER 7. Practical analysis of C and machine code programs

caused some retained points-to predicates to be dropped, resulting in imprecisions later in the analysis.
Introducing the type node_data fixed that problem.

Note that the modification we just described corresponds to the 12 edited lines for the javl-* bench-
marks (Table 7.2). (Our type description language is more verbose than the notations used in this thesis,
especially to define new types such as node_data.)

7.3.4 Discussion and conclusions

RQ1 (Is our analysis effective?) Our combination of domains is effective at verifying preservation
of structural invariants—i.e., the invariants expressed by our type-based abstract domain (which entail
spatial memory safety), distinct from the stronger invariants that define some data structures like linked
lists, trees, etc.— on C and binary code, even for benchmarks that have complex sharing patterns, with
a low amount of annotations.

RQ2 (Are retained and staged points-to predicates necessary?) The points-to predicates are very
important for precision, as otherwise the number of false alarms increases significantly. The analysis
with points-to predicates runs just as well on binary programs and on C programs, despite the complex
code patterns that the C compiler may produce. Note that without points-to predicates, more binary
codes are verified than in C: indeed, in some cases the compiler performs a register promotion of a heap
value, which removes the need for a points-to predicate.

RQ3 (Is our analysis efficient?) The analysis performs evenly well on all benchmarks, and scales
well on javl-insert-32×, which consists in an AVL tree insertion composed 32 times with itself. This
benchmark produces a CFG 32 times as large as javl-insert, and is challenging for shape analyses
due to the increasingly complex abstract states [Li+17]. On this benchmark, our analysis, without any
adaptations, scales comparably to the shape analysis with guided clumping (a sophisticated technique
to keep the size of the abstract state under control) described in [Li+17]. This suggests that type-based
invariants allow to keep predictable analysis times. Note that, although the analysis is not precise
enough to verify javl-insert-32×, it can still be used to measure performance: the emission of false
alarms is independent from the fact that the size of the abstract points-to map is bounded by the number
of memory accesses, and therefore so is the complexity of the abstract operators of ℝ♯ and 𝕊𝕥♯.

RQ4 (Is the annotation effort low?) The annotation effort varies between 0 and 12 lines of modifica-
tions (on average 3.2 lines) to the automatically generated physical types. The precondition annotations,
which would be required by any analysis proving the same properties as ours, vary between 0 and 2
lines. On these benchmarks centered around memory safety, the vast majority of manual annotations
consist in specifying that a pointer field should not be null by means of a refinement predicate. The
only exception is the data field of AVL tree nodes (detailed in the annotation example above).

7.4 Related work on static analysis of low-level code

7.4.1 Analysis of machine code

Kinder et al. [KZV09] propose an abstract domain for control flow reconstruction, similar to our CFG-
based domain 𝔾×ℂ. Our computation of new edges in the CFG resembles their resolve operator. Unlike
us, Kinder et al. frame the problem of computing a sound abstract state at each node of the partial
CFG as a data flow problem, which they solve with a worklist-based algorithm. This leads to subopti-
mal behavior in the presence of loops: if the state abstract domain has infinite increasing chains, then

7.4. Related work on static analysis of low-level code 105

they must either sacrifice termination or replace all their joins by widenings, which is costly in terms
of precision. In contrast, we frame the problem of computing abstract states in a partial CFG as the
computation of the abstract semantics of a flowchart program, which allows us to reuse standard tech-
niques for such computations, including the choice of a small set of widening points [Bou93], while still
enforcing termination.

CodeSurfer/x86 is a tool to analyze machine code executables [Bal07; Bal+05], designed to be used
in conjunction with the commercial disassembler IDAPro. It takes as input the CFG, function bound-
aries and call graph produced by IDAPro as the starting point of the analysis, and performs an abstract
interpretation on the given CFG to infer over-approximations of possible states at each location, like we
do. Although the CFG given by IDAPro may be incorrect or incomplete, CodeSurfer/x86 completes it
into an over-approximation of the concrete CFG using a fixpoint computation similar to ours, or emits
an alarm if it fails to do so. Unlike us, CodeSurfer/x86 abstracts sets of heap regions by their alloca-
tion site, in the manner of pointer analyses. We therefore expect it to struggle with code manipulating
large or dynamically-allocated data structure, since many heap objects will be abstracted into a single
summary node, regardless of the structure of data. To regain some precision, Balakrishnan and Reps de-
veloped the recency abstraction [BR06], which we mentioned in Section 6.5 and which notably enabled
CodeSurfer/x86 to gain precision in analysis of code involving virtual function tables.

7.4.2 Analysis of low-level C

Miné [Min06] proposes a way to use a classical numerical abstract domain —i.e. a numerical domain
that concretizes to 𝒫(𝒱 → 𝕍), where 𝒱 is a finite set of variables and 𝕍 the set of values— to analyze
low-level C code that performs byte-level access to values, possibly involving unions, pointer casts, and
pointer arithmetic. To achieve this, the numerical domain is used not directly on the set of variables
but on a collection of abstract memory cells, which are in turn mapped to the contents of C variables.
The abstract cells play a role similar to our symbolic variables, except that in [Min06] the set of cells is
finite. In contrast, in our framework the set of symbolic variables is infinite, which always permits to
use hitherto unused variables to represent, e.g., memory allocation.

As already mentioned in Chapter 2, the shape analysis tool Predator has been extended to support
low-level C programming patterns such as unrestricted pointer arithmetic, pointers to a non-zero offset
in a structure, manipulation of pointers to invalid targets, or block memory operations. No other shape
analysis to our knowledge deals with such low-level constructs, even though some abstractions have
been adapted to deal with some forms of pointer arithmetics [LCR10; KSV10].

106 CHAPTER 7. Practical analysis of C and machine code programs

Part II

End-to-end Verification of Embedded
Kernels

Chapter8
Kernel semantics and implicit properties

Outline of the current chapter

8.1 System loop 109
8.1.1 Attacker model and trusted components 111
8.1.2 Example kernel . 111

8.2 State properties 112
8.2.1 Absence of run-time errors . 112

8.3 Absence of privilege escalation as a state property 113
8.3.1 Definition . 113
8.3.2 A semantics suitable for parameterized verification 113

8.4 Implicit properties 115
8.5 In-context verification of kernels 116

8.5.1 Abstracting the attacker-controlled transition 116
8.5.2 Illustration on the example kernel . 117

In order to present our methodology of OS kernel verification, in this chapter we define the semantics
of a system managed by a kernel, at the machine code level (Section 8.1). After defining state properties
(Section 8.2) and absence of run-time errors, we formally define absence of privilege escalation as a state
property in Section 8.3, and show that it is also an implicit property (Section 8.4), that is, a property that
does not require writing a specification tailored to each OS kernel.

8.1 System loop

We consider a computer system consisting in hardware running two kinds of code in succession: a kernel
runtime, which is security-critical, and user code. The kernel runtime starts executing whenever an
interrupt occurs, either a software interrupt (e.g. an application performed a system call) or a hardware
interrupt (e.g. due to a timer firing, or an illegal memory access). We call system loop this alternation
of kernel code and user code. In the context of kernel verification, the user code is unknown. Our goal
is to ensure that the only code running as privileged is the uncompromised, security-critical code. We
model the privileged nature of a system state by a predicate privileged ∶ 𝕊 → 𝔹 on machine states.

109

110 CHAPTER 8. Kernel semantics and implicit properties

kernel entry kernel exit

kernel runtime

user code

Figure 8.1: Alternated execution of kernel and user code.

1 typedef struct {
2 Int8 pc;
3 Int8 sp;
4 Int8 flags;
5 } Context;
6

7 typedef struct {
8 Int8 base;
9 Int8 size_and_rights;

10 } Segment;
11

12 typedef struct {
13 Segment code;
14 Segment data;
15 } Memory_Table;
16

17 typedef struct Thread {
18 Memory_Table *mt;
19 Context ctx;
20 Thread *next;
21 } Thread;
22

23 typedef struct {
24 Thread *threads;
25 Int8 threads_length;
26 } Interface;
27

28 register Int8 sp′, pc′, flags′,
29 mpu1, mpu2;
30 Thread *cur;
31 Context *ctx;
32 extern Interface *itf;

33 void kernel() {
34 switch(interrupt_number()) {
35 case RESET:
36 init();
37 load_mt();
38 load_context();
39 case YIELD_SYSCALL:
40 case TIMER_INTERRUPT:
41 save_context();
42 schedule();
43 load_mt();
44 load_context();
45 case ... : ...
46 }
47 }
48

49 void save_context() {
50 ctx->pc = pc′;
51 ctx->sp = sp′;
52 ctx->flags = flags′;
53 }
54 void schedule() {
55 cur = cur->next;
56 ctx = &cur->ctx;
57 }
58 void init() {
59 cur = &itf.threads[0];
60 ctx = &cur->ctx;
61 }
62 void load_mt() {
63 mpu1= &cur->mt->code;
64 mpu2= &cur->mt->data;
65 }
66 void load_context() {
67 pc′= ctx->pc;
68 sp′= ctx->sp;
69 flags′= ctx->flags;
70 }

Figure 8.2: Code of a simple embedded OS kernel.

8.1. System loop 111

kernel
image

user
image

a0 cur : a7 a1 ctx: a8

a2 :
Thread[2] ae c8 d5 01 a7 ae c8 d8 01 a2

ac itf :
Interface

a2 02
ae :

Mem_Table c0 0f e0 0f

Figure 8.3: Example of a memory dump of the system.

In a typical OS kernel, this predicate corresponds to the value of a special register —or a bit in a flags
register— containing the hardware privilege level.

8.1.1 Attacker model and trusted components

The attacker’s goal is to escalate privilege, either by running untrusted software with privilege or by
injecting code into the kernel runtime. The attacker controls the user code and user data—loaded with
the kernel before boot—and can perform any software-based attack, such as modifying user task code
and memory at runtime; but cannot make the hardware deviate from its specification, and thus cannot
perform physical attacks nor exploit hardware backdoors or glitches. We trust only a minimal number
of components:

• the software used to load the kernel and user tasks to memory (bootloader, EEPROM flasher, etc.);
• and the tools used to perform the formal verification.

8.1.2 Example kernel

Consider the code in Figure 8.2 which implements a simple kernel; for simplicity’s sake, this kernel
executes on fictitious 8-bit hardware; and we show it as a C program, although what we analyze is
the kernel executable. The user code executes using three registers pc′, sp′ and flags′, distinct (e.g.
banked) from those used for the kernel execution. The kernel executes whenever an interrupt occurs.
If the interrupt corresponds to a preemption (e.g. user code calls a “yield” system call, or the kernel
receives a timer interrupt), it saves the values of the registers of the preempted thread (“save_context”),
determines the next thread to be executed (“schedule”, here a simple round-robin scheduler), sets up
the memory protection to limit the memory accessible by this thread (“load_mt”), restores the previous
register values of the thread (“load_context”), and transitions to user code. In this example, memory
protection is done using twoMemory Protection Unit (MPU) registers (mpu1 or mpu2): user code can only
access the memory addresses allowed by one of the mpu registers, each giving access to one segment (i.e.
interval of addresses). In addition, unsetting the hardware privilege flag (PRIVILEGED bit in the flags′
register) forbids user code to change the values of mpu1 and mpu2.

A special interrupt (RESET) corresponds to the system boot, where the kernel initializes the memory
(“init”). Additional interrupts (the other cases) would perform additional actions, like other system
calls or interfacing with hardware.

Memory layout and parameterization

Let us now look at thememory layout of the kernel (Figure 8.3). The kernel is parameterized, i.e. indepen-
dent from the user tasks running on it: both the kernel and user tasks can be put in separate executable
images and linked at either compile-time or boot-time. This separation is necessary for closed-source

112 CHAPTER 8. Kernel semantics and implicit properties

kernel vendors, and also allows certifying the kernel image independently to reuse this certification in
several applications.

For instance, in Figure 8.3, addresses a0..a1 come from the kernel executable (the kernel image),
while addresses a2..b2 come from the user tasks executable (the user image). While Figure 8.3 represents
a system composed of two threads sharing the same memory table, the same kernel image can be linked
to another user image to run any number of threads, each with different memory rights.

A consequence of this parameterization is that the addresses of many system objects (e.g. of type
Thread or Memory_Table) vary and are not statically known in the kernel. It makes the code much
harder to analyze and explains why in existing automated verification approaches [Dam+13; Nel+19;
Nor20], these objects must be statically allocated in the kernel, hardcoding a fixed limit on the number
of Threads, for instance.

Interface and precondition

The kernel and user images agree on a shared interface to work together. In our example, this interface
consists in having the variable itf at an address known by both images; a common alternative is to use
the bootloader to share such information [FB]. Also, the system is not expected to work for any user task
image with which the kernel would link. For instance the system would misbehave, if itf->threads
pointed to ctx, to the kernel code or to the stack. Thus, system correctness depends on some precondition
on the provided user image.

8.2 State properties

We model the system consisting of the kernel and the tasks as a transition system ⟨𝕊, S0,→⟩, where S0
is the set of initial states, and → corresponds to the transition from one instruction to the next defined
in Section 7.2.1. In all states of S0, the memory contains the code of the kernel at the addresses specified
by the kernel executable; this comes from the fact that we trust the bootloader.

Definition 8.1 (State property). A state property P is a set of states P ⊆ 𝕊. The transition system
⟨𝕊, S0,→⟩ satisfies P if and only if all states reachable from S0 belong to P, i.e., if JS0Kbin ⊆ P.

8.2.1 Absence of run-time errors

The definition of what is a run-time error varies depending on programming languages and verification
requirements. In C, for instance, floating-point computations can produce infinities or NaN values,
which is not an error; however, in some verification contexts where infinities andNaNs are not desirable,
the production of such values is considered to be a run-time error.

Similarly, in machine code, as part of the hardware specification, some operations can trigger soft-
ware interrupts, namely illegal opcodes, illegal memory accesses, and division by zero. However, these
events are usually unwanted. We make the choice to consider the occurrence of such events as run-time
errors, and model them by a transition to the error state Ω. The definition of absence of runtime errors
is thus straightforward:

Definition 8.2 (Absence of run-time errors). The transition system ⟨𝕊, S0,→⟩ satisfies absence of runtime
errors (ARTE) if and only if Ω ∉ JS0Kbin.
ARTE is thus a state property.

Our analysis proves ARTE by verifying that the absence of transitions to Ω.

8.3. Absence of privilege escalation as a state property 113

unprivileged privileged

kernel-controlled 3 3
attacker-controlled 3 privilege escalation

Figure 8.4: Privilege escalation happens when the system reaches a privileged state controlled by the
attacker.

8.3 Absence of privilege escalation as a state property

8.3.1 Definition

The semantics of some assembly instructions depends on the privilege level. For instance on usual
processors, system registers cannot be modified when in an unprivileged state.

Two entities are sharing their use of the system, called the kernel and the attacker. In the kernels that
we consider, a state is kernel-controlled if the next instruction that it executes comes from the kernel
executable file and was never modified; all the other states are considered attacker-controlled.

Notation 8.1. Given a state 𝑠 ∈ 𝕊, we let A-controlled(𝑠) denote the fact that 𝑠 is attacker-controlled.

In the context of the embedded kernels that we study, A-controlled(𝑠) is false if and only if 𝑠.pc belongs
to the region of kernel code, and that region was never modified.

Definition 8.3 (Absence of privilege escalation). We define privilege escalation as reaching a state that
is both privileged and attacker-controlled (Figure 8.4). On the contrary, a transition system ⟨𝕊, S0,→⟩
enjoys absence of privilege escalation (APE) if no such state is reachable.

Thus, an attacker can escalate its privilege by either gaining control over privileged kernel code (e.g.
by code injection), or by leading the kernel into granting privilege to user code (e.g. by corrupting the
flags′ register).

8.3.2 A semantics suitable for parameterized verification

The semantics of the system depends on the user code. But we want to verify the kernel independently
from any particular user code that it may run.

In the rest of this thesis, we call parameterized verification of the kernel a verification that does not
depend on user code.

Definition 8.3 cannot be used directly for parameterized verification, because the execution of the
whole system depends on the user code. We solve this problem by defining a new semantics for machine
code which is independent from the attacker’s execution.

Regular and interrupt transitions

We partition the transition relation into regular transitions and interrupt transitions. Regular transitions
either preserve the current privilege level or go from a privileged state to an unprivileged one, but cannot
evolve from an unprivileged state to a privileged one. Interrupt transitions are the only way to evolve
from unprivileged to privileged. In OS kernels, it corresponds to the reception of hardware or software
interrupts.

114 CHAPTER 8. Kernel semantics and implicit properties

Empowering the attacker

In this section, we will define a new, approximated transition system in which the attacker is more
powerful.

We first define relation
A⇝ which over-approximates the transitions that an attacker can effectively

perform (i.e., we make the attacker more powerful). Instead of only being able to execute the next
instruction under the program counter, the attacker will now be able to execute sequences of arbitrary
instructions:

Definition 8.4 (Empowered transition relation). We call empowered transition a transition correspond-
ing to the execution of any instruction. Recall that ℐ ⊆ stmt × jump denotes the set of assembly instruc-

tions supported by the hardware. The empowered transition relation
A⇝ ⊆ 𝕊 × 𝕊 is defined as:

𝑠 A⇝ 𝑠′ ⟺ ∃𝑖 ∈ ℐ, 𝑠′ ∈ J𝑖Kℐ{𝑠}

The reflexive and transitive closure of
A⇝ is denoted as

A⇝∗.

We now define the new transition system ⟨𝕊, S0,⇝⟩ with a new transition relation⇝. The⇝ relation
restricts the ability to execute arbitrary instructions to attacker-controlled states; when a state is kernel-
controlled, the normal transition relation → applies. In addition, interrupt transitions are also possible
in attacker-controlled states.

Definition 8.5 (Attacker-abstracted transition relation). The attacker-abstracted transition relation⇝ ⊆
𝕊 × 𝕊 is defined by:

𝑠 ⇝ 𝑠′ ⟺ 𝑠 → 𝑠′ ∨ (A-controlled(𝑠) ∧ 𝑠 A⇝∗ 𝑠′)
The ⇝ relation still restricts the ability of the attacker to execute arbitrary instructions, as hardware
restrictions related to privilege and memory protections still apply. In addition, interrupt transitions
are possible in attacker-controlled states.

Lemma 8.1. Every state reachable in the transition system ⟨𝕊, S0,→⟩ is also reachable in ⟨𝕊, S0,⇝⟩.
Proof. Easy from the fact that → is included in⇝ by definition (Definition 8.5).

Now, to verify APE although the user code is not known to the analyzer, we rely on the following
assumption:

Assumption 8.1. Running an arbitrary sequence of privileged instructions allows to reach any state of 𝕊.

This assumption is reasonable; it amounts to assuming that an arbitrary sequence of instructions with
hardware privilege allows changing any register or memory location, thus reaching any state. However,
depending on the hardware, some registers may hold only a restricted set of values; or some memory lo-
cations tied to hardware devices may not be modifiable. In that case it is enough to modify the definition
of the set of states 𝕊 to only include reachable states.

From this assumption, we can prove the following theorems:

Lemma 8.2. If a transition system ⟨𝕊, S0,⇝⟩ is vulnerable to privilege escalation, then the only satisfiable
state property in the system is the trivial state property ⊤, true for every state.

Proof. If a privilege escalation vulnerability exists, by definition there is a reachable state that is both
attacker-controlled and privileged (Definition 8.3), therefore the transition system contains all execu-
tions of arbitrary sequences of instructions from that state (Definition 8.5) and thus, by Assumption 8.1,
any state of 𝕊 is reachable.

8.4. Implicit properties 115

Theorem 8.3. If a transition system ⟨𝕊, S0,⇝⟩ satisfies a non-trivial state property, then it also satisfies
APE.

Proof. This theorem is the contrapositive of Lemma 8.2.

Theorem 8.3 has two crucial practical implications:

• if privilege escalation is possible, the only state property that holds in the system is the trivial one,
making it impossible to prove definitively any other property. Thus, proving absence of privilege
escalation is a necessary first step for any formal verification of an OS kernel;

• The proof of any non-trivial state property implies as a byproduct the existence of a piece of code
able to protect itself from the attacker, i.e. a kernel with protected privileges. In particular, we
can prove absence of privilege escalation automatically, by successfully inferring any non-trivial
state property with a sound static analyzer.

8.4 Implicit properties

We call implicit properties program properties whose definition only depends on the semantics con-
sidered, and not on any particular program. ARTE, or the preservation of typing that we defined in
Chapter 4, are examples of implicit properties, as opposed to e.g. loop invariants, user assertions or
function contracts. Their advantage is that they can be verified more easily, as they do not require a
tailored specification to be written for each program.

Definition 8.6 (Implicit poperty). An implicit property is a property that does not depend on a particular
program.

Theorem 8.4. ARTE is an implicit property.

Proof. We defined it without reference to specific programs.

In the following theorem, we state formally that preservation of structural invariants is an implicit
property. Since the typed semantics J⋅K𝑡 excludes ill-typed executions, programs that preserve structural
invariants are characterized by the fact that their typed semantics contains the same states as their
untyped semantics (up to type erasure).

Theorem 8.5. Preservation of structural invariants is an implicit property. More precisely, given a mapping
ℳ from type names to types and a set of initial well-typed states S0, the property ρ(P), that holds if and
only if (untyp ∘JPK𝑡)S0 = (JPK ∘ untyp)S0, is an implicit property.

Proof. The property ρ applies to any P and its definition only depends on a mapping ℳ and a set of
well-typed states.

Theorem 8.6. Absence of privilege escalation is an implicit property.

Proof. By Theorem 8.3, absence of privilege escalation is equivalent to the existence of a non-trivial
state property in the semantics⇝.

Note that the definition of⇝ depends on the A-controlled predicate, whose definition depends on the
location of the kernel code in memory in the initial state. However, we argue that it is still reasonable
to call APE implicit, as the A-controlled predicate is a notion applicable to any embedded kernel, and
can be derived automatically from the kernel image.

Recasting APE as an implicit property allows to vastly lighten the verification effort compared to e.g.
a verification using assisted program proof, which requires expliciting invariants tailored to the kernel
being verified [Kle+09; WKP80; Bev89; Ric10; Gu+15; Xu+16; Alk+10; YH11; Vas+16; Fer+17], either at
the level of the main system loop, or at the level of smaller loops in the code.

116 CHAPTER 8. Kernel semantics and implicit properties

In-context analysis

kernel
exit ℰ

kernel
entry

user code

runtime code

initial
location ℓ0

boot
code

Find P ⊊ 𝕊 such that: J{𝑠0}Kbin ⊆ P

Figure 8.5: Fully automated, in-context analysis of the system.

8.5 In-context verification of kernels

We now describe how to use an analysis like the one described in Section 7.2 to verify an OS kernel in
context, that is, for a given interface.

As Theorem 8.3 states, it is enough to verify any non-trivial state property on the whole kernel–
applications system to establish APE. One therefore needs to use a static analysis to over-approximate
the set of reachable states J{𝑠0}Kbin (see Definition 7.5), and hopefully find a set distinct from 𝕊.

To do that, one can use a “flat model” memory domain similar to 𝕄♯ (Section 7.2.4) to represent the
entire memory; the type-based shape domain is not necessary, since the interface is known at the time
of the analysis. Since all data manipulated is located at known addresses, this domain simply represents
the memory as a mapping from addresses to abstract values:

Definition 8.7 (Fully enumerative state abstract domain). The fully enumerative state abstract domain
is defined as:

𝕊♯
flat = (𝕏 → 𝕍 ♯) × (𝔸 ⇀ 𝕍 ♯) × 𝔻num

with concretization:

γflat ∶ 𝕊♯
flat → 𝒫(𝕊 × (𝕍 ♯ → 𝕍))

γflat(σ♯, ℎ♯,𝓋♯) = {((σ, ℎ), 𝓋) | ∀𝑥 ∈ 𝕏, σ(𝑥) = 𝓋(σ♯(𝑥))
∀𝑎 ∈ 𝔸, ℎ(𝑎) = 𝓋(ℎ♯(𝑎)) }

The abstract semantics of 𝕊♯
flat is the obvious, point-wise lifting of the abstract operators of 𝔻num.

Like 𝕄♯ in Section 7.2.4, the domain 𝕊♯
flat is implemented using optimizations that are standard.

8.5.1 Abstracting the attacker-controlled transition

In order to overapproximate⇝ in our analysis, we abstract the attacker-controlled transition as follows:
whenever control jumps to an instruction that is not in the code of the kernel, i.e. whenever the next
state is possibly attacker-controlled, two cases are possible:

• if that stage is privileged, then the analysis reports a possible privilege escalation, and stops.
• Otherwise, the analysis drops all knowledge about non-system registers, i.e., registers that can
be modified by unprivileged code, and about the parts of memory that are not protected against
writing by the memory protections currently in place. The analysis then continues from the
beginning of the kernel runtime—e.g. from the beginning of the kernel() function in the example
kernel of Figure 8.2.

8.5. In-context verification of kernels 117

For instance, in our example kernel, the abstract attacker-controlled transition is triggered at the end of
the function load_context(), since the next instruction to execute is an unknown, not kernel-controlled
instruction. This effectively results in analyzing the system loop, where the user code is replaced by
the abstract attacker-controlled transition (Figure 8.5). As for all loops, the analysis continues until a
fixpoint is reached.

8.5.2 Illustration on the example kernel

We illustrate our method on the example kernel of Figure 8.2.

Abstract attacker-controlled transition

The real attacker-controlled transition (which does not appear in the example kernel code) consists in
executing the code that starts at pc′ after the end of load_context(). This transition can be abstracted
by assigning unknown, unconstrained values to:

• the user registers pc′, sp′, and flags′;
• the memory locations that are not protected by either mpu1 or mpu2, if flags′ has the PRIVILEGED
bit unset;

• every memory location, if PRIVILEGED is set in flags′.

Note that the implementation of this transition is not specific to the kernel that we analyze (it is not
“hardcoded”): it is only specific to the hardware on which the kernel is implemented.

Computed state property

Using our abstract interpreter for machine code on the system composed of the kernel code with the
special user code transition, starting with the initial state of Figure 8.3, our analysis computes a state
property which implies1 that, at all times in the system loop (i.e. after boot):

• Addresses a0 (variable cur), a6 and ab hold either a2 or a7;
• address a1 (variable ctx) can hold values a3 or a8;
• Register mpu1 always holds ae and mpu2 always holds b0;
• Addresses a2 and a7 always hold ae;
• Addresses a5 and aa and the flags′ register can hold any value with the PRIVILEGED bit unset;
• Addresses a3, a4, a8, a9, and all the other registers can have any value;
• Addresses in the range [c0, cf] and [e0, ef], (made accessible by the mpu registers) can have any
value;

This automatically computed invariant must be manually written in prior automated methods [DGN13;
Nel+19; Nor20].

Verifying implicit properties

The state property above implies that when the user code executes, the system is set up such that
execution is not PRIVILEGED, and the memory protection tables prevent the user code from modifying
kernel data. In fact, themere presence of a non-trivial invariant implies that APE is impossible. Verifying
ARTE (i.e. no faulty execution of an instruction) is simple as our invariant incorporates the CFG (i.e. the
set of all instructions executable by the kernel) and computes a superset of values for every operand of
every instruction.

1The property computed consists in a set of states for every possible program location.

118 CHAPTER 8. Kernel semantics and implicit properties

In other words, an in-context analysis enables us to prove APE and ARTE on this particular system,
automatically, without any annotations. And indeed we show in our experiments (Section 10.6) that our
tool is able to prove APE on some simple kernels by an in-context analysis.

However, the system is only verified for a given, known interface. In the next chapter, we make this
method more general and perform parameterized verification.

Chapter9
Parameterized verification of OS kernels

Outline of the current chapter

9.1 Shortcomings of in-context verification 120
9.2 Method overview 120
9.3 Illustration on the example kernel 121

9.3.1 Lightweight type annotation . 121
9.3.2 Parameterized static analysis of the kernel 121
9.3.3 Base case checking . 123
9.3.4 Discussion . 123

9.4 Differentiating boot and runtime code 124
9.4.1 Difficulties with the verification of the initialization code 124
9.4.2 Principle of the differentiated verification 124
9.4.3 Base case checking . 125

9.5 Conclusion 126

In the previous chapter, we presented a method for verifying ARTE and APE on computer systems
consisting in a kernel image (containing kernel code and initial data) and a user image (containing
application code and initial data). More precisely, what is needed is only the kernel image and the
interface, i.e. a part of the user image whose location is a convention between kernel and application
developers. We called this method in-context verification because it requires an instance of the interface.

In-context verification does not satisfy our objective of verifying a kernel in a parameterized way,
that is, independently from any user image. In-context verification also has other limitations, namely the
lack of robustness and scalability of the analysis. We discuss these points in Section 9.1. We then propose
a method of parameterized kernel verification. Section 9.2 gives a high-level view of this method, and
we illustrate it in Section 9.3 on our example kernel. Finally, we remark that this method is insufficient
for kernels with a complex initialization procedure; Section 9.4 proposes a differentiated handling of boot
and runtime code to verify such kernels.

119

120 CHAPTER 9. Parameterized verification of OS kernels

9.1 Shortcomings of in-context verification

The fully automated verification works in practice for small, simple kernels, but has some shortcom-
ings. The root of the problem lies in the flat memory model (also used by all the previous binary-level
automated methods [Dam+13; Nel+19; Nor20]), i.e. viewing the memory as a single large array of bytes.
This abstraction poses three distinct problems:

• Robustness, i.e., the ability to recover from an imprecision. In the in-context analysis, imprecisions
can cascade so much that the analysis can no longer compute an invariant. This would happen
for instance if, in our example kernel, the set of possible values for variable cur, namely {a2, a7},
was over-approximated by the interval [a2, a7]. The root cause of this lack of robustness is that
a numerical abstraction of addresses must be very precise to preserve the structure of data in
memory.

• Scalability, because of the need to enumerate large sets. For instance, on a system running 1,000
tasks, the values for mpu1 may point to 1,000 different arbitrary addresses, whichmust be precisely
enumerated if we want to be robust;

• Over-specialization: it is impossible to analyze programs without knowing the precise memory
layout of all the data. In particular, the example kernel cannot be analyzed independently from
the user image, even though this kernel has been designed to be independent from the user image.

We propose to use the type-based shape domain to lift those three limitations, at the expense of writing
a small number of annotations.

9.2 Method overview

Our method extends that of Section 8.5 with the following key points:

Abstraction of the interface using physical types Instead of representing the interface contents using
the flat memory model, we abstract it into its structure, expressed using physical types. Specifically, we
use the structural invariants provided by types to precisely analyze the parts of kernel code that ma-
nipulate the interface; and we verify that the kernel preserves the well-typedness of the interface. This
solves the robustness and scalability issues of the flat model and allows parameterized analysis, i.e. anal-
ysis of the kernel independently from a specific user image. The kernel memory, which mainly consists
of the kernel’s stack and global (mutable and immutable) data, on the other hand, is still represented
numerically using the flat model, which allows to verify the kernel using its raw binary.

Differentiated handling of boot and runtime code We propose to handle kernel runtime and boot
differently. On the one hand, the kernel runtime should preserve existing structural invariants that exist
on the interface, while the boot code establishes those invariants by initializing the structures. This
makes the runtime suitable for verification by our type-based shape domain, which aims at verifying
the preservation of memory invariants. On the other hand, the boot code establishes those invariants by
initializing the data structures present in the interface; and our experiments (see Section 10.4) show that
our type-based domain is not precise enough on such initialization code. We therefore make use of the
fact that the boot code is mostly deterministic (only small sources of non-determinism remain: multicore
handling, device initialization, etc.) to analyze it robustly using in-context analysis (Section 8.5). Based
on these observations we propose amethod (Section 9.4) where boot code is verified using the in-context
analysis, and the runtime code is verified using the parameterized static analysis.

9.3. Illustration on the example kernel 121

Summary: a method in three steps We propose a three-step method that relies on two above key
ingredients.

• Step 1: Lightweight annotation of the interface types. The structure of the interface should be
known, as it is part of the convention between kernel and application developers; yet a num-
ber of additional annotations may be necessary for the verification to succeed (see example in
Section 9.3.1 and cases studies of Chapter 10).

• Step 2: Parameterized static analysis of the kernel. The result of this step is a state property P
holding on all executions, under the precondition that the initial state is well typed. If P is the
trivial state property 𝕊 (i.e. if the analysis is not precise enough), then go back to Step 1 to refine
the interface types.

• Step 3: Base case checking consists in verifying that the initial state is indeed well typed.

9.3 Illustration on the example kernel

We illustrate how the 3-stepmethod is applied on the example kernel of Figure 8.2 (repeated on page 122).

9.3.1 Lightweight type annotation

First, we define a set of physical types that describe the structure of the interface between the kernel
and the applications, i.e. all data accessible through the global itf. Since knowing the structure of the
interface is necessary in order to develop applications for the kernel, we expect this structure to be
documented. Physical types can be automatically generated from C types or from debug annotations,
if available. However, it may be necessary to refine those types, as in our experiments on ordinary
non-kernel programs in Section 7.3.

In the kernels that we have studied, these refining annotations mostly consist in indicating the
size of arrays (Figure 9.1, type Interface), and which pointers may be null. We also specify that the
memory zone accessible to a task is disjoint from the kernel address space (Figure 9.1, type Segment),
and that saved user flags are unprivileged (Figure 9.1, type Flags). Note that these manual annotations
are smaller (and simpler) than the full loop invariant (Section 8.5.2); this is even more true on larger
kernels.

Concretely, what we call annotations consists in a set of types like in Figure 9.1. These types must be
written in a separate file and provided to our tool along with the kernel executable. No binary or source
code is annotated; instead, our tool only requires to know the address and the type of the interface
entry point (type Interface at address ac in the example), i.e. the memory location that the kernel
should use to access any element of the interface. The set of types is necessarily provided by the kernel
(and bootloader) developers as part of the software development kit; the refinement predicates on types
Flags, Segment and Interface, required to successfully complete the verification, can also be provided
as part of the kernel documentation; or finding them can be part of the verification work. We give
practical details about this in Chapter 10.

9.3.2 Parameterized static analysis of the kernel

We then analyze the kernel code using the abstract domain 𝔽 ♯ (Section 6.4), starting from an initial
abstract state 𝕤0 that is such that the global itf holds an address of type Interface.(0)∗.

The analysis then computes a state property P ⊆ 𝕊 such that JγF(𝕤0)Kbin ⊆ P, i.e. starting from an
initial state abstracted by 𝕤0, every reachable state is in P. On this simple kernel, the analysis will easily
compute a non-trivial P (i.e. P ≠ 𝕊) which implies in particular the following:

• Address a0 (variable cur) holds an admissible Thread∗ value, i.e., cur ∈ ⦇ Thread.(0)∗ ⦈ℒ,𝓋;

122 CHAPTER 9. Parameterized verification of OS kernels

1 typedef struct {
2 Int8 pc;
3 Int8 sp;
4 Int8 flags;
5 } Context;
6

7 typedef struct {
8 Int8 base;
9 Int8 size_and_rights;

10 } Segment;
11

12 typedef struct {
13 Segment code;
14 Segment data;
15 } Memory_Table;
16

17 typedef struct Thread {
18 Memory_Table *mt;
19 Context ctx;
20 Thread *next;
21 } Thread;
22

23 typedef struct {
24 Thread *threads;
25 Int8 threads_length;
26 } Interface;
27

28 register Int8 sp′, pc′, flags′,
29 mpu1, mpu2;
30 Thread *cur;
31 Context *ctx;
32 extern Interface *itf;

33 void kernel() {
34 switch(interrupt_number()) {
35 case RESET:
36 init();
37 load_mt();
38 load_context();
39 case YIELD_SYSCALL:
40 case TIMER_INTERRUPT:
41 save_context();
42 schedule();
43 load_mt();
44 load_context();
45 case ... : ...
46 }
47 }
48

49 void save_context() {
50 ctx->pc = pc′;
51 ctx->sp = sp′;
52 ctx->flags = flags′;
53 }
54 void schedule() {
55 cur = cur->next;
56 ctx = &cur->ctx;
57 }
58 void init() {
59 cur = &itf.threads[0];
60 ctx = &cur->ctx;
61 }
62 void load_mt() {
63 mpu1= &cur->mt->code;
64 mpu2= &cur->mt->data;
65 }
66 void load_context() {
67 pc′= ctx->pc;
68 sp′= ctx->sp;
69 flags′= ctx->flags;
70 }

Figure 8.2: Code of a simple embeddedOS kernel for a fictitious 8-bit hardware. (repeated from page 110)

9.3. Illustration on the example kernel 123

kernel
image

user
image

a0 cur : a7 a1 ctx: a8

a2 :
Thread[2] ae c8 d5 01 a7 ae c8 d8 01 a2

ac itf :
Interface

a2 02
ae :

Mem_Table c0 0f e0 0f

Figure 8.3: Example of a memory dump of the system. (repeated from page 111)

ℳ =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

Flags ↦ {𝑥 ∶ word1 | 𝑥 & PRIVILEGED = 0}
Context ↦ word1 × word1 × Flags
Segment ↦ {𝑥 ∶ word1 | 𝑥 ≥ 𝕖kernel} × word1

Memory_Table ↦ Segment × Segment
Task ↦ Memory_Table.(0)∗≠0 × Context × Task.(0)∗≠0

Interface ↦ Task[𝕟].(0)∗≠0 × {𝑥 ∶ word1 | 𝑥 = 𝕟 ∧ 𝑥 ≥ 1}

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

Figure 9.1: Physical types representing the interface structure. The symbolic variables 𝕖kernel and 𝕟
represent the greatest address of the kernel code region and the number of tasks, respectively.

• Address a1 (variable ctx) holds an admissible Context∗ value, i.e., ctx ∈ ⦇ Context.(0)∗ ⦈ℒ,𝓋;
• Registers mpu1 and mpu2 hold admissible Segment values;
• Register flags′ holds an admissible Flags value;
• The memory region holding the interface matches the types of Figure 9.1, i.e., the state is well
typed.

For example, the example interface in Figure 8.3 verifies the above invariant. E.g. the set of admissible
values for the type Thread.(0)∗ in that case is {a2, a7}. However, note that instead of describing the
invariant for one given user image, this new invariant describes what happens for all (well-typed) user
images, hence it is parameterized.

9.3.3 Base case checking

The previous step has established a non-trivial state property (and therefore APE) for all executions
starting from a state in γF(𝕤0). And 𝕤0 represents the states such that the interface is well typed; there-
fore, we have succeeded in verifying the kernel under this precondition.

All that remains to do is to make sure that we can decide whether a particular instance of the system,
that is, an executable containing the kernel, the applications, and the interface, verifies this precondition.
For this, we need an algorithm that takes a memory ℎ, an address 𝑎 and a valuation 𝓋 and answers the
following question: is there a labelling ℒ such that ℎ is consistent with ℒ and ℎ[𝑎..𝑎+size(Interface)] ∈
⦇ Interface ⦈ℒ,𝓋? This algorithm is defined in Section 9.4.3.

9.3.4 Discussion

The whole process (parameterized analysis of the kernel and base case checking) is summarized graph-
ically in Figure 9.2. Note that the technique is no longer fully automated, as the user has to provide type
annotations (even if most of it comes from the existing types of the interface). But let us observe that

124 CHAPTER 9. Parameterized verification of OS kernels

Parameterized static analysis
of the kernel

Base case
checking

Checks:
𝑠0 ∈ γF(𝕤0)

kernel
exit ℰ

kernel
entry

user code

runtime code

initial
location ℓ0

boot
code B

Finds P such that: JγF(𝕤0)Kbin ⊆ P

Figure 9.2: Parameterized verification when user memory starts initialized.

the example kernel works correctly only when linked with a well-typed user image (according to Fig-
ure 9.1), and thus parameterized verification of this kernel is impossible without limiting, using a manual
precondition, the admissible user image. Thus in general, parameterized kernel verification is impossible
without user-supplied annotations, given here using the type annotations.

9.4 Differentiating boot and runtime code

9.4.1 Difficulties with the verification of the initialization code

In the example system, all the data structures in the user image are already initialized and thus are
initially well typed for the types of Figure 9.1. In other systems this might not be the case: for instance,
the values of the next field in Threads could be uninitialized, and thus the boot code would have to
create the circular list; or the Memory_Table table could be dynamically allocated and filled during the
boot, as in our case studies.

This poses a difficulty for our verification method: our experiments (Chapter 10) show that the type-
based shape domain performs well to verify the preservation of structural invariants, but not so well to
verify the establishment of such invariants.

One of the reasons for that is that our type-based domain is designed to work with a fixed labelling
of memory; whereas in the context of an initialization procedure, the analysis would need to start with
generic types and refine those types, depending on the operations of the program. Instead, our abstrac-
tions can only represent initialization in a limited way, through staged points-to predicates. However,
this is insufficient if the kernel e.g. allocates and partly initializes several structures, and then iterates
through them again to complete their initialization.

9.4.2 Principle of the differentiated verification

To handle these cases, we propose to perform the base case checking when the kernel has finished
booting and enters its main loop (Figure 9.3), rather than at the beginning of the execution (Figure 9.2).
More precisely, we:

• Perform the parameterized analysis —i.e., using the abstract domain 𝔽 ♯— of the boot code, starting
from an initial state 𝕤0 where the interface is initialized (i.e., well typed). If the analysis emits
alarms when analyzing the boot code, we ignore them. Ignoring alarms is equivalent to ignoring
erroneous executions. From this we deduce an abstract state 𝕤booted. The idea is that we make
the temporary hypothesis that this abstract state is, in fact, a sound abstraction of all post-boot
states. However, since alarms can be emitted during the analysis, we have no guarantee of that.

• Perform the parameterized analysis of the kernel runtime code, taking 𝕤booted as the initial abstract
state to obtain a state property P. If there are any alarms, or equivalently if P = 𝕊, stop here.

9.4. Differentiating boot and runtime code 125

Parameterized analysis of boot code

Computes abstract state 𝕤booted at ℰ

In-context analysis of boot code

Computes abstract state 𝕤IC at ℰ

Parameterized static analysis
of runtime code

Base case checking

kernel
exit ℰ

user code
+ runtime

initial
location ℓ0

boot code

Finds P such that:JγF(𝕤booted)Kbin ⊆ P
Checks: γflat(𝕤IC) ⊆ γF(𝕤booted)

Figure 9.3: Parameterized verification when user memory needs initialization.

If P ≠ 𝕊, then we have a proof of APE on the kernel under the precondition that the state at the end
of the boot code is in γF(𝕤booted). Given an instance of the system, this precondition can be verified as
follows:

• Perform a fully automated, in-context analysis (i.e., using a flat model memory abstraction) of the
boot code with the given interface to get an abstract state 𝕤IC ∈ 𝕊♯

flat at the end of boot code.
• Check that all the “in-context” states at the end of the boot match the parameterized invariant,
i.e. check that γflat(𝕤IC) ⊆ γF(𝕤booted). We detail how this check is performed in Section 9.4.3.

Once this is done, the full system is verified: the combination of both analyses imply the existence of a
non-trivial state property on the whole system, and thus APE. This process is summarized graphically
in Figure 9.3. Finally, this method allows to verify in addition the absence of run-time errors, both in
the boot code and the runtime.

This method uses two characteristics of the boot code:

• First, one goal of the boot code is to initialize the data structures so that they are well-typed
according to Figure 9.1. The initial value for these types is unimportant as theywill be overwritten,
so the code will also work if these data structures are initialized.

• The execution of the boot code is almost deterministic (except for hardware device handling and
multicore execution) once the interface contents are known, thus the in-context analysis in this
case is both robust and scalable (as the abstract values that are propagated abstract mostly single-
tons).

Note that this method avoids the need to specify (and annotate) the code with the actual precondition
on the user image; here, the precondition that we verify is that “the user image should be such that its
initialization will make it well-typed”, using the fact that it is easier to describe the runtime types than
the initial types.

9.4.3 Base case checking

We now detail how to perform the second step of base case checking, namely checking that all the
“in-context” states at the end of the boot match the parameterized invariant, i.e. check that γflat(𝕤IC) ⊆
γF(𝕤booted).

This second step is performed as follows:

1. first, the contents of the interface is checked for compatibility with type Interface;

126 CHAPTER 9. Parameterized verification of OS kernels

2. if that is the case, then 𝕤IC is abstracted into an element of 𝔽 ♯, denoted as 𝕤′
IC, by abstracting away

the interface and all the rest of non-kernel memory, and simply dropping the address range 𝔸⧵𝔸
from the abstract state.

3. Finally, the tool checks whether 𝕤′
IC ⊑𝔽 ♯ 𝕤booted.

We now detail how the first step, i.e. checking the compatibility between a memory region and a type,
is performed.

Typechecking of memory regions

This algorithm decides whether a region is well typed, i.e. whether the value it holds is in ⦇ 𝑡 ⦈ℒ,𝓋 for
some type 𝑡 .

More precisely, the algorithm takes a memory heap ℎ, a valuation 𝓋, an address 𝑎0 and a type 𝑡 ; it
either returns a labelling ℒ such that ℎ[𝑎..𝑎 + size(𝑡)] ∈ ⦇ 𝑡 ⦈ℒ,𝓋, or fails.

It works by constructing the labelling ℒ by following pointers recursively, if possible. In the same
process, it checks the satisfaction of refinement predicates.

The valuation parameter 𝓋 serves to assign concrete values to the symbolic variables present in
the refinement predicates and array sizes of the type 𝑡 ; e.g. the symbolic variables 𝕖kernel and 𝕟 for the
example types of Figure 9.1. This instantiation of symbolic variables can be provided manually, but in
many cases it can be derived automatically from the system image; it was the case for the kernels that
we verified (Chapter 10).

This algorithm works by recursively updating a mapping ℒ ∶ 𝔸 ⇀ 𝕋A, which is initially empty.
Then the procedure check(𝑎0, 𝑡) proceeds as follows:

1. For all 𝑎 ∈ [𝑎0, 𝑎0 + size(𝑡)[,
• if 𝑎 ∉ dom(ℒ), then replace ℒ with ℒ[𝑎 ← 𝑡.(𝑎−𝑎0)].
• Otherwise, if ℒ(𝑎) ⪯ 𝑡.(𝑎−𝑎0) or 𝑡 .(𝑎−𝑎0) ⪯ ℒ(𝑎), then the most precise of the two address
types (in the ⪯ sense) becomes the new ℒ(𝑎).

• Otherwise, the two types are incompatible, and the procedure fails.

2. Then,

• if 𝑡 = word𝑛 , then return.
• If 𝑡 = n (where n is a type name), then perform check(𝑎0,ℳ(n)).
• If 𝑡 = 𝑢.(𝑘)∗, then let 𝑣 = ℎ[𝑎0−𝑘..𝑎0−𝑘+𝒲]. If 𝑣 = 0, then return; otherwise perform
check(𝑣 , 𝑢).

• If 𝑡 = 𝑡1 × 𝑡2 then perform check(𝑎0, 𝑡1) and then check(𝑎0 + size(𝑡1), 𝑡2).
• If 𝑡 = {𝑥 ∶ 𝑢 | 𝑝(𝑥)}, and predicate 𝑝 is satisfied, i.e. eval𝓋(𝑝, ℎ[𝑎0..𝑎0+size(𝑡)]) = true, then
perform check(𝑎0, 𝑢); otherwise the procedure fails.

• If 𝑡 = 𝑢[𝑠], then for each 𝑖 ∈ [0, 𝑠[, perform check(𝑎0 + 𝑖 ⋅ size(𝑢), 𝑢).
If the procedure does not fail, then ℒ can be completed into a total function by mapping all unmapped
addresses to word1.(0). Then, we have ℎ[𝑎..𝑎 + size(Interface)] ∈ ⦇ Interface ⦈ℒ,𝓋, i.e. the interface is
well typed for the labelling ℒ.

9.5 Conclusion

In this chapter, we have described a method to verify absence of privilege escalation and absence of
runtime errors on OS kernels. This method is parameterized, in the sense that it is performed on the
kernel independently of user code or data.

9.5. Conclusion 127

Note that, to complete the proof of ARTE and APE for a given user image, one must perform the base
case checking on that user image. But as discussed in Section 9.3.4, any verification of an embedded
kernel is conditional to a precondition on interface data, although this precondition is sometimes left
implicit.

Next chapter details the application of our parameterized verification method on two embedded
kernels.

128 CHAPTER 9. Parameterized verification of OS kernels

Chapter10
Kernel verification case study and
experimental evaluation

Outline of the current chapter

10.1 Experimental setup 130
10.1.1 Asterios . 130
10.1.2 EducRTOS . 131
10.1.3 Analysis implementation . 131
10.1.4 Experimental methodology . 132

10.2 Soundness check 132
10.2.1 Protocol . 132
10.2.2 Results . 133
10.2.3 Conclusions . 133

10.3 Real-Life Effectiveness 133
10.3.1 Protocol . 133
10.3.2 Results . 134
10.3.3 Conclusions . 135

10.4 Evaluation of the method 135
10.4.1 Protocol . 135
10.4.2 Results . 136
10.4.3 Conclusions . 136

10.5 Genericity 137
10.5.1 Protocol . 137
10.5.2 Results . 137
10.5.3 Conclusions . 137

10.6 Automation and Scalability 137
10.6.1 Protocol . 137
10.6.2 Conclusions . 138

129

130 CHAPTER 10. Kernel verification case study and experimental evaluation

We have applied the analysis described in this thesis to two embedded kernels, including Asterios, a
kernel used in the industry. We use these case studies to evaluate our verification methodology.

We seek to test the following Research Questions (RQ):

RQ0: Soundness checkOurmachine code analysis is sound, and therefore should emit alarmswhenever
we try to verify APE and ARTE on a kernel that is vulnerable or buggy. To test that this is the
case, we run our analysis on kernels with deliberately introduced bugs or security flaws.

RQ1: Real-life Effectiveness Can our method verify real (unmodified) embedded kernels? How prac-
tical is it?

RQ2: Internal evaluation Are the type-based shape domain and the differentiated handling of the boot
code necessary elements of our method? And what is the impact of increasing or reducing the
amount of manual annotations?

RQ3: Genericity Can our method apply to different kernels, hardware architectures and toolchains?
RQ4: Automation Is it possible to prove APE and ARTE in OS kernels fully automatically, i.e. without

manual annotations?
RQ5: Scalability with increasing number of tasks Although parameterized verification (see Chapter 9)

consists in analyzing the kernel alone, to verify an instance of the embedded system one must also
perform the base case checking step on the interface (see Section 9.2). Since this step depends on
the characteristics of user tasks, and notably the number of tasks, we evaluate how it scales with
large task counts.

These results were presented, along with our kernel analysis methodology, in an article published in
the RTAS 2021 conference [Nic+21].

Section 10.1 describes the two embedded kernels that we analyzed, as well as the implementation of
the analysis and other experimental conditions common to all experiments. The following sections are
dedicated to the research questions. Each section describes the experiments performed, their results,
and discusses the conclusions. Sections 10.2 to 10.5 describe the experiments for RQ0, RQ1, RQ2 and
RQ3, respectively, while Section 10.6 describes our joint experiment for RQ4 and RQ5.

10.1 Experimental setup

10.1.1 Asterios

We consider for RQ1 and RQ2 the Asterios kernel, an industrial kernel for implementing security-
and safety-critical hard real-time applications, used in industrial automation, automotive, aerospace
and defense. It is developed by the Krono-Safe company. Krono-Safe has no prior experience in the
use of formal methods, can only afford limited expenses on formal verification, and uses standard build
tools. We believe that many small companies developing OS kernels have the same constraints.

Studying the formal verification of security properties of Asterios was one of the motivations of
the present work. This context explains the key requirements of the method we developed, which must
be:

• Non-invasive: Krono-Safe engineers are system developers, not formal method experts. They
have important time-to-market constraints. It is thus important that formal verification does
not get in their way. In practice, they gave us a development and final version of their kernel
executable file on which the verification was performed; we never saw the source code of the
kernel, and never asked them to compile specific versions: we verified the executable “as is”.
This is an important fact because to our best knowledge, all existing formally verified operating
systems kernels were developed with the goal of being formally verified; this is not the case of
the Asterios kernel.

10.1. Experimental setup 131

• Cost-effective and automatic: Krono-Safe is an small-sized company and cannot afford spend-
ing a huge amount of effort into formal verification, thus the method should be cost-effective.
In addition, their operating system can be tailored using a large set of options (the hardware,
the number of cores on the board, how protection tables are used, the scheduler, etc), resulting in
many versions of the system, so the method should be able to handle this variety. The automation
of the technique is thus a critical factor.

• With a high level of trust, as their system operates in safety-critical and security-critical envi-
ronment. Especially, all the tools and scripts used to produce the executable needed to be left out
of the trusted computing base (TCB), because on some architectures they sometimes have to use
vendor-provided tools that are not formally verified. This, and the need to comply to some safety
standards requiring working at machine-code level like the DO-333, contributed to the decision
to work only on the executable.

We consider a port of the kernel to a 4-core ARM Cortex-A9 processor with ARMv7 instruction
set. It relies on a Memory Management Unit (MMU) for memory protection (pagination). The kernel
features a hard real-time scheduler that dispatches the tasks between the cores (migrations are allowed),
and monitors timing budgets and deadlines. The kernel adopts a “static microkernel” architecture, with
unprivileged services used to monitor inter-process communication. The configuration for the user
tasks (i.e. the interface) is generated by theAsterios toolchain, and all thememory is statically allocated.
The system is parameterized: the kernel and the user images are compiled separately and both are loaded
by the bootloader, as explained in Section 8.1.2.

We have analyzed two versions:

• beta, a preliminary version where we found a vulnerability;
• v1, a more polished version with the vulnerability fixed and debug code removed.

The code segment of the kernel executable contains 329 functions (objdump reports around 10,000
instructions), shared between the kernel and the core unprivileged services. Finally, Krono-Safe pro-
vided us with a sample user image containing a number of applications, as well as the associated inter-
face.

10.1.2 EducRTOS

Since, for some of our experiments (RQ0, RQ3–5), we needed access to the kernel source code and
control over its build process, which was impossible with Asterios for commercial reasons, a new
embedded kernel called EducRTOS1 was developed by Matthieu Lemerre and the author of this thesis.
EducRTOS supports a variety of features such as different schedulers and dynamic thread creation, and
its implementation targets a different architecture than Asterios, namely 32-bit x86. The memory
protection mechanism used is segmentation, instead of pagination. EducRTOS is also being used to
teach operating systems to master students. Depending on the included features, the kernel size ranges
between 2,346 and 2,866 instructions.

10.1.3 Analysis implementation

We analyze kernels using the Binsec/Codex tool (described in Section 7.2) that we implemented, and fol-
lowing the kernel verification method with differentiated handling of boot and runtime code described
in Section 9.4. The abstract domain used is similar to the combined shape–fixed memory domain 𝔼♯
described in Section 7.2.4, except that we did not use the retained and staged points-to predicates2.

1Available at https://github.com/EducRTOS/EducRTOS.
2We had not yet developed the abstractions of retained and staged points-to predicates when we carried out these kernel

verifications.

https://github.com/EducRTOS/EducRTOS

132 CHAPTER 10. Kernel verification case study and experimental evaluation

Since the analysis is performed on Binsec’s intermediate representation [Dav+16], the analysis im-
plementation is entirely independent from the hardware architecture, apart from the abstract attacker-
controlled transition (Section 8.5.1). To implement this transition, we use a simple sound approximation
consisting in setting to an arbitrary value any unprotected register or memory location. Its implemen-
tation takes 23 lines of OCaml for ARM and 62 lines for x86.

Because Asterios is a multicore kernel, we computed an approximation of the execution that is
sound in all possible interleavings by proceeding as follows: we perform a first analysis of the boot
code for each of the 4 CPUs (by changing the result returned by the cpuid assembly instruction), thus
obtaining the set of memory addresses manipulated by at least two distinct CPUs. We then run the
analysis again, considering that these regions contain a non-deterministic choice between the values
from all CPUs (thereby approximating all interleavings), and verified that no new addresses were shared
between CPUs (in which case we would have needed to run the analysis again, and so on until reaching
a fixpoint). By the same method, we verify that two concurrent executions of the kernel runtime do not
share any memory, and then analyze them independently.

Availability Binsec/Codex and EducRTOS are open-source; in addition, alongwithNicole et al. [Nic+21]
was published an artifact enabling to reproduce our results3. This artifact does not include Asterios,
however, which is not freely distributable.

10.1.4 Experimental methodology

We performed our formal verification completely independently from Krono-Safe activities. In par-
ticular, we never saw the source code of Asterios, and our interactions with Krono-Safe engineers
were limited to a general presentation of Asterios features. We ran all our analyses on a standard
laptop with an Intel Xeon E3-1505M 3 GHz CPU with 32 GB RAM. All measurements of execution time
or memory usage have been observed to vary by no more than 2% across 10 runs. We took the mean
value of the runs.

10.2 Soundness check

Our method is sound in principle, in that it proves by construction APE and ARTE only on kernels
where these properties are true. Yet, this ultimately depends on the correct implementation of the static
analysis; in this preliminary experiment, we want to empirically check that our tool indeed does not
prove APE and ARTE on buggy kernels.

10.2.1 Protocol

We deliberately introduce 4 backdoors in EducRTOS by creating 4 new system calls that:

1. jump to an arbitrary code address with kernel privilege,
2. grant kernel privilege to user code segments,
3. write to an arbitrary address,
4. or modify the memory protection tables to cover parts of the kernel address space.

These backdoors can easily be exploited to gain control over the kernel. Additionally, we add 3 bugs
possibly leading to crashes in existing system calls: a read at an arbitrary address, an illegal opcode
error and a possible division by zero.

3The artifact is available at https://github.com/binsec/rtas2021_artifact and contains a copy of Binsec/Codex and EducRTOS.
More information about the Binsec platform can be found on the website: https://binsec.github.io.

https://github.com/binsec/rtas2021_artifact
https://binsec.github.io

10.3. Real-Life Effectiveness 133

10.2.2 Results

For each of the added vulnerabilities, our analysis does not prove APE (it either reported a maximally
imprecise result or an alarm, at the instruction where the error occurs); for each bug, it does not prove
ARTE.

For instance, a write or read to a completely unknown address result in a maximally imprecise
abstract state (precluding the verification of any property), whereas granting kernel privilege to a task,
or a possible division by zero, triggers a specific alarm.

In most cases, the location of the precision loss or alarm allows to straightforwardly understand the
nature and origin of the backdoor or bug. The only exceptions are modifying user code segments in
an incorrect way (granting kernel privilege) and modifying the memory protection tables in a way that
lets tasks access the kernel address space. In those cases, the alarm is located at the end of the kernel
runtime, just after the code that gives control to a task. The user of the analysis must then track the
cause of the incorrect configuration. To that end, the analysis outputs an over-approximated CFG of the
kernel and a log giving the possible values of each register and memory location at each node in that
CFG.

10.2.3 Conclusions

Binsec/Codex was able to detect all the privilege escalation vulnerabilities and runtime errors that we
introduced.

Additional notes This corresponds to the experience that we hadwhile developing EducRTOS: several
times, we launched Binsec/Codex and discovered unintentional bugs, such as a wrong check on the
number of syscalls, or writes to null pointers, that were not detected by testing. Our method even
discovered a bitflip in a kernel executable that occurred when the file was copied.

10.3 Real-Life Effectiveness

10.3.1 Protocol

Our goal here is to evaluate the effectiveness of our parameterized verification method on an unmodified
industrial kernel, measured by: (1) the fact that the method does succeed in computing a non-trivial
invariant for the whole system, i.e., computes an invariant under precondition for the kernel runtime
and checks that the user tasks establish the precondition; (2) the precision of the analysis, measured by
the number of alarms (i.e. properties that the analyzer cannot prove); (3) the effort necessary to set up
the analysis, measured by the number of lines of manual annotations; and (4) the performance of the
analysis, measured in CPU time and memory utilization.

The bulk of the annotations (1,057 lines) consists in definitions of physical types, and was automat-
ically generated from the sample user image, using debug information. Debug information is otherwise
not used by the analysis (and the kernel executable does not contain any). Manual annotations consist
in changing the definitions by adding refinement predicates, or information about the lengths of arrays.
These annotations were reverse-engineered as the ones required for the kernel analysis to succeed with
no remaining alarm (and also correspond to necessary requirements for the code to run without errors),
but they could be obtained from the documentation or directly provided by the OS developers.

We consider the two versions of the Asterios kernel, beta and v1, and two configurations (i.e., sets
of type definitions):

• Generic contains types and parameter invariants which must hold for all legitimate user images;

134 CHAPTER 10. Kernel verification case study and experimental evaluation

Generic Specific
type

annotations
generated 1057

manual 57 (5.11%) 58 (5.20%)

Kernel version beta v1 beta v1
analysis

of runtime
status 3 3 3 3

time (s) 647 417 599 406

alarms in runtime
1 true error
2 false alarms

1 false
alarm

1 true error
1 false alarm

0 3

base case
checking

status 3 3 3 3

time (s) 32 29 31 30

Proves APE and ARTE? N/A 7 N/A 3

Table 10.1: Main verification results on Asterios

• Specific further assumes that the stacks of all user tasks in the image have the same size. This is
the default for Asterios applications, and it holds on our case study.

10.3.2 Results

The main results are given in Table 10.1. The Generic annotations consist in only 57 lines of manual
annotations, in addition to 1,057 lines that were automatically generated (i.e. 5% of manual annotations,
and a manual annotations per instruction ratio of 0.58%). The Specific set of annotations adds one more
line.

We report the time and outcome of the parameterized analysis of the kernel runtime (row “analysis
of runtime”). In all cases, the analysis was able successfully compute a state property for all executions
starting from the post-boot state.

When analyzing the beta version with these annotations, only 3 alarms are raised in the runtime:

• One is a true vulnerability: in the supervisor call entry routine (written in manual assembly),
the kernel extracts the system call number from the opcode that triggered the call, sanitizes it
(ignoring numbers greater than, or equal to, 7), and uses it as an index in a table to jump to the
target system call function; but this table has only 6 elements (therefore indexed 0 to 5), and is
followed by a string in memory. This off-by-one error allows an svc 6 system call to jump to
an unplanned (constant) location, which can be attacker-controlled in some user images. The
error is detected as the target of the jump goes to a memory address whose content is not known
precisely, and thus that we cannot decode.

• One is a false alarm caused by debugging code temporarily violating the shape constraints: the
code writes the constant 0xdeadbeef in a memory location that should hold a pointer to a user
stack (yielding an alarm as we cannot prove that this constant is a valid address for this type), and
that memory location is always overwritten with a correct value further in the execution4.

• The last one is a false alarm caused by an imprecision in our analyzer when user stacks can have
different sizes. The analysis abstracts task data using the type-based shape domain: the data for
each task is an instance of some type Task, akin to type Task in our example kernel (see Figure 9.1).
In Asterios, instances of Task store the context of a suspended task, including the stack, which is
treated as an opaque array of bytes. The size of that array is stored in another field. However, the

4This false alarm could have been avoided using the staged points-to predicates; however, we had not developed the points-to
predicate extensions at the time this experiment was carried out.

10.4. Evaluation of the method 135

current design of physical types does not allow to specify a field as holding the size of an array, as
discussed in Section 4.4.2. As a consequence, there are two alternatives to perform the analysis:

– Let the stack size of each task be unknown. This is what is done in the Generic set of anno-
tations. This causes a false alarm as the kernel runtime manipulates the saved stacks, and
the analysis is unable to verify that the accessses are in the bounds of the array, since its size
is unknown.

– Force all stack sizes to be equal. The size is still not precisely known at the time of the
analysis, but it is the same for all saved contexts. This situation can be precisely encoded in
physical types by using a global symbolic variable to represent the stack size. This is what
is done in the Specific set of annotations.

Extending our type system with a form of dependent types, as discussed Section 4.4.2, would
allow to lift this limitation.

When analyzing the v1 version, the first two alarms disappear, and no new alarm is added. Analyzing
the kernel with the Specific annotations makes the last alarm disappear. In all cases, base case checking
succeeds.

Analyzing the v1 kernel with the Specific annotations allows to reach 0 alarms, meaning that we
have formally verified APE and ARTE.

The analysis time is almost unaffected by the small change in the kernel code, or in the type defini-
tions given in parameter of the type-based domain. The analysis time is less than 11 minutes for the
parameterized analysis, and 35 seconds for base case checking.

10.3.3 Conclusions

This experiment shows that it is feasible to verify absence of privilege escalation of an industrial micro-
kernel automatically, with a very small amount of manual annotations, and without any change to the
original kernel. In particular:

• The analysis is effective, in that it identifies real errors in the code, and verifies their absence once
removed;

• The analysis is precise, as we were able to reach 0 false alarms on the correct code, and had no
more than 2 false alarms on each configuration of the analysis;

• The annotation burden is very small (58 simple lines), as the kernel invariant is computed auto-
matically and most of the type annotations are automatically converted from the interface types;

• Finally, the analysis time, for a kernel whose size is typical for embedded microkernels, is small
(between 406 and 647 seconds).

10.4 Evaluation of the method

10.4.1 Protocol

The goal of this experiment is to evaluate the influence of each component in our three-step method
(Section 9.2), in particular:

1. whether our shape domain is needed,
2. what is the nature and impact of the shape annotations, and
3. whether differentiated handling of boot code is mandatory.

136 CHAPTER 10. Kernel verification case study and experimental evaluation

Annotations No annotation Generated Minimal Generic Specific Dedicated

Generated 0 1057 1057 1057 1057 1057
Manual 0 0 10 57 58 62

boot runt. boot runt. boot runt. boot runt. boot runt. boot runt.
Analysis time (s) 7 N/A 7 N/A 342 394 195 222 187 219 151 203
alarms N/A N/A N/A N/A 85 13 60 1 59 0 43 0
Base case checking N/A N/A 3 3 3 3

Table 10.2: Impact of the methodology.

We experiment on the v1 kernel version, and report results for both the boot code and the runtime,
using different sets of annotations with an increasing amount of annotations:

• No annotation (equivalent to having no shape domain);
• Generated annotations (without any manual annotations);
• Minimal adds 10 lines of manual annotations, mainly limiting the range of array indices to prevent
overflows in pointer arithmetic. This is the minimal set of annotations that allows the analysis to
infer a non-trivial state property, but not without emitting alarms (see results below).

• Generic and Specific are the annotations defined above in Section 10.3.1; TheGeneric configuration
adds 47 lines indicatingwhich pointer types or structure fieldsmay be null, which fields hold array
indices, and relating array lengths with memory locations holding these lengths. The Specific
configuration adds the constraint that stack sizes must be equal.

• Dedicated hardcodes some parameters, such as the number of tasks, and sets them to the values
present in our sample user image.

10.4.2 Results

Table 10.2 shows the result of this evaluation. The analysis does not succeed in finding an invariant
without the shape domain or without manual annotations: the analysis is too imprecise and aborts
when performing the parameterized analysis of the boot code. In the table, we denote this result as 7 in
the “boot” column. In all cases, the fatal imprecision is caused by the inability to resolve the destination
address of a write, making the entire memory unknown.

When the parameterized analysis of the boot code succeeds in yielding an abstract state 𝕤booted (see
Section 9.4), column “runt.” contains the time and number of alarms for the parameterized analysis of
the kernel runtime.

Only 10 lines of manual annotations are necessary for the analysis to yield a non-trivial invariant
(Minimal), albeit withmany alarms in both boot code and runtime. TheGeneric configuration eliminates
most alarms in the runtime, but 60 alarms remain in the boot code. The Specific annotations reach
0 alarms in runtime, but still 59 alarms in boot code. The Dedicated set of annotations is an attempt to
remove the remaining alarms at the cost of parameterization, by specializing the analysis to our sample
user tasks. This did reduce the number of alarms, but we could not eliminate them completely.

10.4.3 Conclusions

Parameterized verification of the kernel cannot be done without the shape domain. The ability to extract
the shape configuration from types is extremely useful, as 95 % of the annotations are automatically
extracted, requiring only 57 lines of manual annotations. Finally, differentiated handling of boot code is
necessary as, firstly, the boot code is much harder to analyze than the runtime, and secondly, the shape
invariants holds only after boot code terminates.

10.5. Genericity 137

10.5 Genericity

10.5.1 Protocol

The fact that we successfully applied our method to verify Asterios and EducRTOS, which are two
kernels running on different architectures (resp. ARM and x86) and memory protection mechanisms
(resp. segmentation and pagination), shows that the approach is not tied to a specific hardware.

Further, to evaluate the dependence of the method on specific compilation toolchains or code pat-
terns, we also performed a parameterized verification of 96 EducRTOS variants. Each variant was com-
piled with a different valuation of the following parameters:

• Compiler: either GCC 9.2.0 or Clang 7.1.0.
• Optimization flags: -O1, -O2, -O3 or -Os.
• Scheduling algorithms: round-robin, fixed-priority, or earliest-deadline-first scheduling.
• Dynamic thread creation: enabled or disabled.
• Debug printing: enabled or disabled.

We then applied the parameterized verificationmethodwith differentiated handling of boot and runtime
code. We also performed base case checking on a sample user image containing two tasks.

10.5.2 Results

The detailed results for each variant are provided in Appendix A. We could parametrically verify all
96 EducRTOS variants. The verification requires 98 lines of type definitions (which we extracted auto-
matically, as we did for Asterios, from debug information) and 12 to 14 lines of manual annotations
(depending on the scheduler), with 12 lines being common to all variants; corresponding to an anno-
tation per instruction ratio of less than 0.59%. The verification of each variant takes between 1.6 s and
73 s.

10.5.3 Conclusions

Ourmethod is applicable to different kernel features and hardware architectures. It is robust: non-trivial
changes in the kernel executable, like introduction of new features, or change in code patterns due to
changes in the compilation process, do not not require to change the configuration. This robustness
makes it an interesting tool for verifying kernels coming in many variants.

10.6 Automation and Scalability

10.6.1 Protocol

In this experiment, we perform a fully automated in-context verification (with no annotation) of a simple
variant of the EducRTOS kernel with round-robin scheduling and no dynamic task creation. We then
use this kernel to evaluate the scalability of this approach by modifying the number of tasks that run
on the system, and compare it against our parameterized method.

Figure 10.1 gives the analysis time and memory usage of both approaches (parameterized and in-
context verification) for various numbers of tasks on the system. For the parameterized analysis, the
invariant computation takes less than a second and requires only 12 lines of annotations. In this case,
the only part that depends on the number of tasks is the base case checking, and more precisely and the
in-context static analysis of the almost-deterministic boot code.

138 CHAPTER 10. Kernel verification case study and experimental evaluation

0.1

1

10

100

1000

1 10 100 1000 100000.1

1

10

100

tim
e
(s
)

m
em

.u
sa
ge

(G
B)

number of tasks N

Parameterized (time)
Parameterized (mem)

In-context (time)
In-context (mem)

Figure 10.1: Performance when verifying a system with N tasks.

The parameterized analysis time seems to behave asymptotically as O(N1.2). This entails that mul-
tiplying the number of tasks by 10 multiplies the analysis time by a bit more than 15; and multiplying
the number of tasks by 100 would multiply the analysis time by about 250. Therefore, for practical task
counts (i.e. less than 100,000), the analysis time remains small.

By contrast, the in-context verification takes O(N2) time which is much less practical. For example,
the in-context verification with 10,000 tasks (which we could not run, not having enough RAM avail-
able) is expected to take about 1 hour 40 minutes, as opposed to 12 minutes with the parameterized
verification. We interpret that by the fact that the number of steps to reach a fixpoint, the number of
modified memory locations, and the number of target locations for the Thread∗ pointers grow with
the number of tasks, resulting in quadratic complexity. This scalability issue is inherent to the use of
in-context verification [Nor20].

Finally, the memory used by the in-context analysis of the boot code grows with the number of
tasks. It should not be the case, since the analysis computes one abstract state per code location, and
the number of code locations does not depend on the number of tasks. This is due to an implementation
issue in our analyzer, caused by the fact that old abstract states are not garbage-collected because they
never become unreachable. Although the growth is less than linear, it makes the parameterized analysis
impractical beyond 10,000 tasks; it should therefore be fixed in the future.

10.6.2 Conclusions

In-context verification with no annotation—and thus fully automated—is achievable on very simple
kernels, but is not robust enough for more complex kernels. Moreover, it does not scale to user images
with very large numbers of tasks. On the contrary, parameterized verification (with few annotations) is
robust and scales almost linearly to large numbers of tasks.

Chapter11
Comparison with existing works on
system and OS verification

Outline of the current chapter

11.1 Classification and positioning 139
11.1.1 Degree of automation . 139
11.1.2 Target property . 141
11.1.3 Trusted computing base (TCB) and verification comprehensiveness . . 142
11.1.4 Features of verified kernels . 142
11.1.5 Verifying systems with unbounded memory 142

11.2 List of kernel verification efforts 143

The kernel verification method presented in this thesis is inscribed in a long history of using formal
methods to verify operating systems. We give here a comprehensive overview of prior verification
works. In Section 11.1, we give a number of evaluation criteria which we use to position our method
among the existing works. Section 11.2 presents the relevant verification efforts in chronological order.
Table 11.1 gives a synthetic overview of the discussion.

11.1 Classification and positioning

Besides large well-known monolithic kernels (e.g., Linux, Windows, *BSD) whose size and complexity
are currently out of reach of formal verification, there is a rich ecosystem of small-size kernels found in
many industrial applications, some of them security- or safety-critical. This includes security-oriented
kernels like separation kernels [Rus81], microkernels [Kle+09], exokernels [EKJ95] and security-oriented
hypervisors [Vas+16] or enclave software [Fer+17]; but also kernels used in embedded systems, for ex-
ample in microcontrollers [Lev+17], real-time [RS94] or safety-critical [Ric10] operating systems.

11.1.1 Degree of automation

We can distinguish three classes of verification methods:

139

140 CHAPTER 11. Comparison with existing works on system and OS verification

Table
11.1:C

om
parison

ofkernelverification
efforts.

Target
kern

el
V
erified

property
V
erification

tech
n
ique

C
ase

study

Verified
property

Im
plies

A
PE?

D
egree

of
autom

ation
Verif.
Level

Param
e-

terized
M
ulti-
core

Infers
invariants

M
anual

A
nnotations

(LoC
)

U
nproved

code
(LoC

)
N
on-

invasive
A
nalysis

tim
e
(s)

U
C
LA

Secure
U
nix

[W
K
P80]

C
om

pliance
w
ith

specification
3

M
anual

Source
3

7
7

N
/A

80%
7

N
/A

K
it[Bev89]

C
om

pliance
w
ith

specification
3

M
anual

M
achine

7
7

7
1,020

definitions
+
3561

lem
m
as

0
3

7
N
/A

seL4
[K

le+09;K
le+14;SM

K
13]

C
om

pliance
w
ith

specification
3

a
M
anual

Source
g

3
7

7
200,000

1,200
(C

,boot)
+
500

(asm
)

7
N
/A

Baby
hyper-

visor
[A

lk+10;PSS12]
C
om

pliance
w
ith

specification
3

Sem
i

autom
ated

Source+
assem

bly
3

7
7

8,200
tokens

0
3

7
4,571

Prosper
[D

G
N
13;D

am
+13]

C
om

pliance
w
ith

specification
3

Sem
i

autom
ated

M
achine

7
i

7
7

6,400
c

0
3

7
≤

28,800

μC
/O

S-II[X
u+16]

C
om

pliance
w
ith

specification
3

a
M
anual

Source
3

7
f

7
34,887

d
37%

3
57,600

e

C
ertiK

O
S
[G

u+16]
C
om

pliance
w
ith

specification
3

M
anual

Source
g+

assem
bly

3
3

7
100,000

0
3

7
N
/A

C
ertiK

O
S 𝑠,K

om
odo 𝑠[N

el+19]
Task

separation
3

Sem
i

autom
ated

M
achine

3
7

7
859

(C
ertiK

O
S 𝑠)

1,462
(K

om
odo 𝑠)

0
3

7
166

(C
. 𝑠)

766
(K

. 𝑠)

K
om

odo
[Fer+17]

Task
separation

3
Sem

i
autom

ated
A
ssem

bly
3

7
7

18,655
0

3
7

14,400

Linux
K
V
M

[Li+21a;Li+21b]
Task

separation
3

M
anual

Source
+

assem
bly

3
3

7
32,700

0
3

7
N
/A

Verve
N
ucleus

[YH
11]

Type
safety

3
Sem

i
autom

ated
A
ssem

bly
3

7
7

4,309
0

3
7

272

X
M
H
F
[Vas+13]

M
em

ory
integrity

7
b

Sem
i

autom
ated

Source
7
h

3
7

N
/A

422
(C

)
+
388

(asm
)

7
76

üX
M
H
F
[Vas+16]

Security
properties

3
Sem

i
autom

ated
Source

+
assem

bly
7
h

7
7

5,544
0

3
7

3,739

Phidias
[N

or20]
A
bsence

of
priv.escalation

3
Sem

i
autom

ated
M
achine

7
3

7
unknow

n
0

3
7

≤
8,935

T
his

w
ork

A
bsence

of
priv.escalation

3
Fully

autom
ated

M
achine

3
3

3
583

0
3

3
406

aA
ssum

ing
thatthe

proofis
com

pleted
to

cover
allthe

code.
b
C
ontrolflow

integrity
is

assum
ed.

cG
enerated

from
a
21,000

lines
ofH

O
L4

m
anualproof.

d
Plus

181,054
LoC

of
specification

and
support

libraries.
eT

he
reported

com
pilation

tim
e
includes

the
support

libraries.
fT

he
verification

is
concurrent

because
of

in-
kernelpreem

ptions.
g
T
he

translation
to

assem
bly

is
also

verified.
h
T
he

hypervisor
supports

a
single

guest
iT

he
hypervisor

supports
tw

o
guests

11.1. Classification and positioning 141

• manual [Bev89; Ric10; Gu+15; Xu+16; Kle+09; Li+21a]: These methods are based on assisted
theorem proving. The tool user has to provide for every program point a candidate invariant, then
use a proof assistant and guide the proof process to verify that every instruction preserves these
candidate invariants;

• semi-automated1 [Alk+10; YH11; Dam+13; Vas+16; Fer+17; Nel+19; Nor20]: the user has to pro-
vide the candidate invariants at some key program points (kernel entry and exit, loops, and op-
tionally other program points like function entry and exit) and then use automated provers to
verify that all paths between these points preserve the candidate invariants using deductive veri-
fication, symbolic execution or symbolic evaluation; Loop invariants, in particular, tend to require
a lot of work; for this reason, semi-automated methods target kernels whose runtime does not
contain complex loops [Dam+13; Nel+19; Nor20].

• fully automated: a sound static analyzer automatically infers correct invariants for every pro-
gram point. The user only provides invariant templates by selecting or configuring the required
abstract domains. This approach has been used to verify source code of critical embedded soft-
ware [Bla+03], but never to verify a kernel.

In addition, all methods, regardless of their automation level, require a number of essential hypotheses
for the proof to be valid. These hypotheses can include the hardware model, or properties of user tasks.
For instance, in our work, the essential hypotheses are that our model of the hardware is correct and
that the initialized state has a structure and contents such that our type annotations hold, which we
verify during base case checking (see Section 9.2).

We demonstrate that abstract interpretation can automatically verify absence of privilege escalation
and absence of runtime errors on embedded kernels from their executable with a very low annotation
burden, sometimes with no manual intervention.

In the parameterized case, we verify kernels with a ratio of annotations per instruction which is at worst
of 13 lines for 2346 instructions (0.59%). By comparison, the automated verification of CertiKOSS [Nel+19]
required 438 lines for 1845 instructions (23.7%).

11.1.2 Target property

Prior kernel verification methods generally target four kinds of program properties:

• Functional correctness [WKP80; Bev89; Kle+09; Alk+10; PSS12; Kle+14; Gu+15; Xu+16], i.e., com-
pliance to a (manually written) formal specification of the kernel.

• Task separation [Rus81; Nel+19; Fer+17; Li+21a] i.e. verifying the absence of undesirable informa-
tion flow between tasks.

• Absence of privilege escalation [YH11; Vas+16; Nor20] (also known as kernel integrity), i.e. proving
that the kernel protects itself and that no attacker can gain control over it.

• Absence of runtime errors [Vas+16] like buffer overflows, null-pointer dereferences, or format
string vulnerabilities.

To achieve maximal automation, we focus on implicit properties (Definition 8.6). Especially, we are
the first to prove that absence of privilege escalation is implicit.

Note that the invariants we infer could significantly reduce the number of annotations required to
verify functional correctness [Nel+19], and can generally help any other analysis; for instance worst-
case execution time (WCET) estimation [Sch+19; CP01] requires knowledge about the CFG andmemory
accesses. Stronger invariants can be inferred by combining our analysis with other domains.

1Some authors call these techniques automated; we use the word semi-automated to emphasize the difference with fully-
automated methods.

142 CHAPTER 11. Comparison with existing works on system and OS verification

11.1.3 Trusted computing base (TCB) and verification comprehensiveness

We only trust that the bootloader correctly loads the ELF image in memory, that the hardware complies
with its specification, and that our abstract interpreter (which has no dependencies) is sound. We do
not trust the build toolchain (compiler, build scripts, assembler and linker), we analyze all of the code,
and we do not assume any unverified hypothesis.

While push-button methods can verify all of the code [DGN13; Nel+19; Nor20], more manual meth-
ods often [Xu+16; WKP80; Kle+14; Gu+16] leave parts of the code unverified when the verification
is hard or overly tedious. While source-level verifications methods sometimes carry to the assembly
level [SMK13] or include support for assembly instructions [PSS12; Vas+16], they usually trust the
compilation, assembly and linking phases. Unlike ours, the proof of the seL4 kernel trusts the boot
code (about 1.2 kLOC) to bring the kernel in the expected state [Kle+14]. However, the property that
they prove is stronger, and unlike ours it is not implied by any non-trivial state invariant (Theorem 8.3),
and therefore the proof is much harder to extend to the entire kernel.

To further reduce our TCB, we would have to verify our static analyzer in a proof language with
a small kernel (like Isabelle [NPW02] or Coq [CH88]), a huge effort that has been shown to be feasi-
ble [Jou+15].

11.1.4 Features of verified kernels

We focus on embedded systems kernels, where the kernel memory is mostly statically allocated (either
in the kernel or in the user image) (e.g. [RS94; MF11; Ric10; DGN13; Nel+19; Nor20]). We do not con-
sider some real-time kernels in which memory protection is absent or optional, as verifying APE on
them would require unchecked assumptions on applicative code. Still, the kernels that we have ana-
lyzed feature complex code, including dynamic thread creation and dynamic memory allocation using
object pools; different memory protection tables (using x86 segments or ARM page tables) modified
at boot and runtime; different real-time schedulers working on arbitrary numbers of tasks; boot-time
parameterization by a user image; and usage of multiple cores with shared memory.

Our method can handle kernels with features out of reach of prior fully automated techniques,
such as real-time schedulers (which require unbounded loops). Rather than requiring kernels to
be adapted to get around the limitations of the tool [Nel+19], we are the first to verify an existing,
unmodified real kernel.

However, like any sound static analyzer, Binsec/Codex may still be too imprecise on some code pat-
terns, emitting false alarms or failing to compute a non-trivial invariant. For instance, our tool would not
handle well self-modification in the kernel, complex lock-free code, or using a general-purpose mem-
ory allocator outside of the boot code. Still, we can directly reuse progress in the automated analysis of
these patterns. An important pattern for real-time systems is full preemptibility in the kernel. It should
be possible to extend our analysis to these systems by leveraging our capacity to handle concurrent
executions, notably by adding a stack abstraction that would be independent from the concrete address
(as in [Rep+10]); this is an important topic for future work.

11.1.5 Verifying systems with unbounded memory

Prior works targeting machine code [Bev89; DGN13; Nel+19; Nor20] use a flat representation of the
memory (where the abstract state enumerates all the memory cells in the kernel), causing scalability
issues in the presence of a large number of tasks [Nor20] and preventing parameterized verification. To
handle systems where the amount of memory is not statically known, we need more complex repre-
sentations that summarize memory. Points-to and alias analyses are fast and easy to setup but are too
imprecise for formal verification, and generally assume that the code behaves nicely, e.g., type-based

11.2. List of kernel verification efforts 143

alias analyses [DMM98] (see Section 2.3) assume that programs comply with the strict aliasing rule –
while kernel codes often do not conform to the C standard [Kle+14]. On the other hand, shape analy-
ses (see Section 2.2) can fully prove memory invariants, but require heavy configuration and generally
cannot scale to a full embedded kernel.
We propose a lightweight type-based shape abstract domain that hits a middle ground: it is fast,
precise, handles low-level behaviors (outside of the C standard) and requires little configuration.
This is also the first time a shape analysis is performed on machine code.

Outside of fully-automated analyses, Walker et al. [WKP80] already observed in the 1980s that rea-
soning on type invariants is well suited to OS kernel verification. Several systems build around this
idea [YH11; Fer+17], leveraging a dedicated typed language. Cohen et al. [Coh+09] describe a typed
semantics for C with additional checks for memory typing preservation, similar to our own checks
on memory accesses. While they use it in a deductive verification tool for C (to verify a hypervisor
[Alk+10]), we build an abstract interpreter for machine code.

11.2 List of kernel verification efforts

We now present a comprehensive list of prior kernel verification works.
The first attempts to verify OS kernels were on the UCLA Secure Unix [WKP80] and the Provably

Secure Operating System (PSOS) [FN79].
PSOS [FN79] was focused on kernel design and code proofs were not undertaken. Nevertheless,

PSOS pioneered the concept of using abstraction layers in OS verification.
Bevier [Bev89] formally verified the functional correctness of a small operating system kernel, imple-

mented in the machine code of an ideal hardware. Contrary to ours, their kernel was not parameterized
(the number of tasks was fixed) and the proof was entirely manual. They proved a state invariant that
implied security properties such as protection of the kernel from the tasks, and impossibility for a task
to enter supervisor mode.

Heitmeyer et al. [Hei+08] manually verified a security policy (mostly consisting in separation of task
data) a model of a security-oriented kernel for an embedded system using the PVS interactive prover,
and provide a hand-written, non machine-checked proof of correspondence between this model and
the source code. They identified that annotating the code to prove its security property is an important
issue, and that methods to extract invariants from the code are needed for practical use.

Klein et al. [Kle+09] were the first to prove the correctness of an OS kernel, seL4, with respect
to a high-level specification. Contrary to our work, strong functional properties are proved, and the
kernel features dynamic task creation andmemory reconfiguration; but the proof is entirely manual, the
kernel was written for the purpose of verification, and the proof assumed correctness of the assembly
code and of the compiler toolchain. The later work of Sewell, Myreen, and Klein [SMK13] extends
the verification of seL4 by validating the compilation of their proven C code to machine code, thus
removing the compiler toolchain from the trusted base. However, the manually-written assembly parts
of the kernel are still trusted.

Yang and Hawblitzel [YH11] verified the Verve kernel, a single-processor kernel written in C#, using
Hoare-style contracts on the kernel source code. The property verified is a form of type safety, which
implies memory safety, but not absence of privilege escalation. Verve is built upon a “Nucleus” written
in typed assembly language (TAL) whose type safety is verified automatically.

Paul, Schmaltz, and Shadrin [PSS12] completes the verification of the “baby hypervisor” of Alkassar
et al. [Alk+10] (implemented on idealized hardware) by extending their deductive verification tool to
support assembly code in addition to C code.

Dam et al. [Dam+13] and Dam, Guanciale, and Nemati [DGN13] have performed semi-automated
machine-level verification of a security-oriented kernel, using deductive verification. Their focus is on

144 CHAPTER 11. Comparison with existing works on system and OS verification

proving correctness of a simplified kernel with regards to an executable specification. The verification
is simplified by the fact that the kernel runtime does not contain any loops.

Gu et al. [Gu+15] verify the compliance to a functional specification of mCertiKOS, a simplified
uniprocessor version of the CertiKOS kernel, using the Coq theorem prover. The approach is based on
abstraction layers and a “contextual refinement” property, which allows the invariants to be simpler
and the verification effort to be lighter and more easily adaptable than in the verification of seL4. The
authors report a development time of less than 1 person-year, compared to 11 person-years for seL4. Gu
et al. [Gu+16] extends the techniques developed in [Gu+15] to the concurrent context and verify mC2,
a concurrent version of mCertiKOS. The authors report about 2 person-years for the verification of the
concurrency features.

Vasudevan et al. [Vas+16] verify low-level security properties, such as memory separation and
control-flow integrity, in some hypervisor modules, using a precise model of the hardware and assem-
bly instructions. The majority of the hypervisor is verified using deductive verification (which requires
annotations) and some assertions are left as runtime checks. In addition, the verification is performed
on the source code, rather than machine code. A prior work [Vas+13] used a fully automated method,
namely software model checking, to verify memory integrity (a property entailed by absence of privi-
lege escalation). However, the process required manually decomposing this property into C assertions
to be verified and assumed control-flow integrity. Some parts of the code (including the assembly code)
were not formally verified.

Xu et al. [Xu+16] have verified functional correctness and priority-inversion-freedom on the C
source code of key modules of an existing commercial OS kernel, using the Coq proof assistant. The
main challenges of their work was discovering and verifying a loop invariant involving updates to
Thread Control Blocks (like Thread in our example kernel, Figure 8.2); and the fact that, like ours, the
OS pre-existing and written by an independent third party, and not written for the purpose of formal
verification.

In a security context, enclaves are separated and encrypted regions for code and data providing a
form of physical security, with hardware support. Ferraiuolo et al. [Fer+17] have verified noninterefer-
ence in Komodo, a software implementation of SGX-like enclaves relying on minimal hardware support
such as memory encryption. For that, they used deductive verification on an assembly-like language.
They needed to trust an unverified, high-level specification of their software monitor.

Nelson et al. [Nel+19] ported CertiKOS [Gu+16] and Komodo [Fer+17] to the RISC-V architecture
(the ports are named CertiKOS𝑠 and Komodo𝑠), and applied their tool Serval to verify a number of in-
variants on the kernel. Those invariants imply task non-interference. Serval works by a mix of symbolic
execution and bounded model checking. In order to perform the verification, they had to change the
interface and implementations of these kernels. Their approach is limited to kernels with what they call
a “finite interface”, i.e. kernels that contain no unbounded loops. This restriction enables the verification
process to be annotation-free, save for a specification, in the form of pre- and postconditions, of kernel
runtime executions.

Nordholz [Nor20] proposes the Phidias hypervisor, whose core is devoid of any dynamic behaviour
that is not strictly required at runtime. Most kernel data structures are statically instantiated. This
lack of dynamicity enables Nordholz to verify APE using blunt symbolic execution. The author does
not detail the amount of annotation necessary for the verification. As with Serval, the use of symbolic
execution precludes hypervisors whose code contains unbounded loops.

Li et al. [Li+21a] retrofitted the Linux KVM hypervisor into a small core and a set of untrusted
services, which enabled them to verify confidentiality and integrity (i.e. non-interference, up to declas-
sification of data deliberately leaked by the VMs) of VM data manually using Coq. Li et al. [Li+21b]
ported this proof to a more realistic hardware model, including a detailed model of the memory protec-
tion hardware and cache hierarchy.

Conclusion

This thesis aims to make the verification of memory properties, including memory safety, more effective
on low-level and systems code. This issue is critical because violations of memory safety still account
for a large portion of security vulnerabilities and software malfunctions. Yet, all modern software in-
frastructures still rely a lot on software written in memory-unsafe languages. In addition, developers
still need to write in unsafe language or in assembly, either for performance or to access some hardware
features directly (like in OS kernels).

The key to effective verification is to have a method which is efficient, both in terms of human effort
and machine resources; which is sufficiently precise to succeed in verifying the property of interest
on the program, and can handle the code patterns typical of systems code. For this we focused on
automated verification methods (based on abstract interpretation, see Chapter 3), which are the most
efficient in terms of human effort.

We introduced a memory abstraction based on types that express structural invariants on memory
down to the byte level (Chapters 4 and 5). Such a type-based analysis offers a trade-off between precise,
flow-sensitive shape analyses on the one end and scalable, flow-insensitive pointer analyses on the other.
Simultaneously, it offers a good compromise between precision and automation: existing techniques
without annotations are too imprecise; we trade some manual effort—namely, writing type definitions—
for an important gain in precision.

However, this analysis alone is not sufficiently precise on some common programming patterns
of low-level code; we add the abstractions of retained and staged points-to predicates (Chapter 6) to
increase precision at a small cost. Our benchmarks show that these two abstractions are necessary to
handle low-level C or machine code programs.

To demonstrate the effectiveness of our approach, we build two analyzers, for C and machine code
(Chapter 7). In addition to the core technique, we added many ingredients necessary to handle low-
level code, such as choosing the right numerical abstract domain, and, in the case of machine code,
inferring control flow, delineating functions, and combining the type-based shape domain with a “flat
model” abstraction. We demonstrate that our analyzer can prove the preservation of typing invariants
(implying spatial memory safety) on low-level code, helping to eliminate an entire class of security
vulnerabilities.

We then focused on the hard problem of verifying OS kernels, which represent the quintessence of
low-level system programs. We applied our analysis of machine code to the executables of embedded
kernels and showed that verifying type-based structural invariants enables to verify further properties,
including absence of runtime errors (ARTE) and absence of privilege escalation (APE). We introduce the
concept of implicit property (Chapter 8), which can be verified automatically, and prove that APE, like
ARTE, is an implicit property.

We also explore the idea of automated parameterized verification (Chapter 9), i.e. verifying the sys-
tem independently from the tasks, as kernels are usually compiled independently from the applicative
code and data. Parameterized verification poses many challenges (such as the need to summarize mem-
ory, or the dependence on a complex precondition on the initial state), which are answered by our static

145

146 Conclusion

analysis technique.
We applied our analysis on embedded kernels (Chapter 10), leading to the verification of ARTE and

APE on a full, unmodified kernel with a very high level of automation.
However, our method is currently limited to those two properties, and cannot yet handle some

complex kernel features. Although ARTE and APE are critical, it is desirable to progress towards the
verification of stronger properties. Future research could focus on the following aspects:

• Using extensions to the type-based shape analysis to verify more advanced properties on ker-
nels. For instance, dependent types as described in Section 4.4.2 would allow to express non-
interference between tasks, by verifying that tasks have access to disjoint memory regions.

• Combining with other verification methods to verify stronger properties. Our method automat-
ically infers a sound CFG (for machine code programs) and sound approximations of reachable
states. This information can be valuable to guide less automated verification tools.

• Analyzing more complex kernels. Lifting some limitations, like the fact that the number and
characteristics of the user tasks are static and fixed, would be beneficial.

Finally, the experiments that we conducted suggest that type-based shape analysis does is relevant not
only on kernels, but also to verify useful properties, such as spatial memory safety, on any kind of pro-
gram. Since effective verification of memory properties on low-level code is critical for the security and
reliability of software, we believe that the analysis should be further improved to prove more properties
on more programs. Specifically, the following directions could be explored:

• Support more language constructs. For example, tagged unions are currently treated very impre-
cisely by the analysis, because types cannot change dynamically depending on some value. Yet,
tagged unions can be found in low-level programs. Support for them would be beneficial, maybe
through the lens of sum types.

• Automated verification of more advanced properties. The type system of physical types can be
extended to express richer properties (as discussed in Section 4.4.2): support could be added to
express relations between structure fields; dependent types would permit to make types depend
on values, e.g. to relate array with their lengths.

• Improving precision of the analysis. This point is related to previous one, as increasing precision
often requires the ability to express stronger invariants. One direction would be to reduce the
precision gap between our type-based analysis and shape analyses based on separation logic, by
extending our abstraction with local separation predicates, e.g. expressing that the two children
of a binary tree node are always separated. This would allow to reduce the number of spurious
aliasing results and thus to improve precision on such structures.

Bibliography

[AHP18] Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce. “The Meaning of
Memory Safety”. In: Principles of Security and Trust - 7th International Conference (POST
’18). Ed. by Lujo Bauer and Ralf Küsters. Lecture Notes in Computer Science. Thessaloniki,
Greece: Springer International Publishing, 2018, pp. 79–105. url: https://doi.org/10.1007/
978-3-319-89722-6_4 (cit. on p. 1).

[Alk+10] Eyad Alkassar, Mark A. Hillebrand, Wolfgang Paul, and Elena Petrova. “Automated Ver-
ification of a Small Hypervisor”. In: Verified Software: Theories, Tools, Experiments. Ed. by
Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani. Red. by David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopou-
los, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Vol. 6217. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 40–54. url: http:
//link.springer.com/10.1007/978-3-642-15057-9_3 (cit. on pp. 115, 140, 141, 143).

[And94] Lars Ole Andersen. “Program Analysis and Specialization for the C Programming Lan-
guage”. University of Copenhagen, 1994 (cit. on pp. 3, 12).

[ASB17] Dennis Andriesse, Asia Slowinska, and Herbert Bos. “Compiler-Agnostic Function Detec-
tion in Binaries”. In: IEEE European Symposium on Security and Privacy (EuroS&P ’17). Paris,
France: IEEE, 2017, pp. 177–189 (cit. on p. 98).

[Bal+05] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. “CodeSurfer/X86—
A Platform for Analyzing X86 Executables”. In: Compiler Construction, 14th International
Conference (CC ’05), Held as Part of the Joint European Conferences on Theory and Practice of
Software. Lecture Notes in Computer Science. Edinburgh, United Kingdom: Springer, 2005,
pp. 250–254. url: https://doi.org/10.1007/978-3-540-31985-6_19 (cit. on p. 105).

[Bal07] Gogul Balakrishnan. “WYSINWYX: What You See Is Not What You Execute”. University of
Wisconsin-Madison, 2007. url: http://pages.cs.wisc.edu/~bgogul/Research/Thesis/bgogul.
thesis.pdf (cit. on pp. 100, 105).

[Bev89] W.R. Bevier. “Kit: A Study in Operating System Verification”. In: IEEE Transactions on Soft-
ware Engineering 15.11 (Nov. 1989), pp. 1382–1396. issn: 1939-3520 (cit. on pp. 115, 140–
143).

[Bla+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. “A Static Analyzer for Large Safety-Critical
Software”. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation (PLDI ’03). Vol. 38. ACM, 2003, pp. 196–207. url: https://doi.
org/10.1145/781131.781153 (cit. on p. 141).

147

https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1007/978-3-319-89722-6_4
http://link.springer.com/10.1007/978-3-642-15057-9_3
http://link.springer.com/10.1007/978-3-642-15057-9_3
https://doi.org/10.1007/978-3-540-31985-6_19
http://pages.cs.wisc.edu/~bgogul/Research/Thesis/bgogul.thesis.pdf
http://pages.cs.wisc.edu/~bgogul/Research/Thesis/bgogul.thesis.pdf
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153

148 Bibliography

[Bou93] François Bourdoncle. “Efficient Chaotic Iteration Strategies with Widenings”. In: Proceed-
ings of the International Conference on Formal Methods in Programming and Their Applica-
tions (FMPA ’93). Ed. by Dines Bjørner, Manfred Broy, and Igor V. Pottosin. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1993, pp. 128–141 (cit. on pp. 90, 105).

[BR06] Gogul Balakrishnan and Thomas Reps. “Recency-Abstraction for Heap-Allocated Storage”.
In: Static Analysis, 13th International Symposium (SAS ’06). Ed. by Kwangkeun Yi. Red. by
David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John
C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Su-
dan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, and Gerhard Weikum. Vol. 4134.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 221–239. url: http://link.springer.
com/10.1007/11823230_15 (cit. on pp. 85, 105).

[Bro09] Neil Brown. “Linux Kernel Design Patterns - Part 2”. In: Linux Weekly News (June 12, 2009).
url: https://lwn.net/Articles/336255/ (cit. on p. 35).

[BS16] George Balatsouras and Yannis Smaragdakis. “Structure-Sensitive Points-To Analysis for C
and C++”. In: Static Analysis - 23rd International Symposium (SAS ’16). Ed. by Xavier Rival.
Vol. 9837. Lecture Notes in Computer Science. Edinburgh, United Kingdom: Springer Berlin
Heidelberg, 2016, pp. 84–104. url: http://link.springer.com/10.1007/978-3-662-53413-7_5
(cit. on p. 16).

[Cal+11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. “Composi-
tional Shape Analysis by Means of Bi-Abduction”. In: Journal of the ACM 58.6 (Dec. 2011),
pp. 1–66. issn: 0004-5411, 1557-735X. url: https://dl.acm.org/doi/10.1145/2049697.2049700
(cit. on pp. 3, 15).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL ’77). The 4th ACM SIGACT-SIGPLAN Symposium. Los Angeles, California: ACM
Press, 1977, pp. 238–252. url: http : / /portal .acm.org/citation.cfm?doid=512950.512973
(cit. on pp. 2, 22, 24, 89, 90).

[CC79] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Analysis Frameworks”.
In: Conference Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages (POPL ’79). Ed. by Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen. San
Antonio, Texas, USA: ACM Press, 1979, pp. 269–282 (cit. on p. 26).

[CE82] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic”. In: Logics of Programs. Ed. by Dexter Kozen.
Vol. 131. Lecture Notes in Computer Science. Berlin/Heidelberg: Springer-Verlag, 1982,
pp. 52–71. url: http://link.springer.com/10.1007/BFb0025774 (cit. on p. 2).

[CH00] Ben-Chung Cheng and Wen-Mei W. Hwu. “Modular Interprocedural Pointer Analysis Us-
ing Access Paths: Design, Implementation, and Evaluation”. In: Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementation (PLDI ’00).
Vancouver, British Columbia, Canada: ACM Press, 2000, pp. 57–69. url: http://portal.acm.
org/citation.cfm?doid=349299.349311 (cit. on p. 13).

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of Linear Restraints among
Variables of a Program”. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’78). Tucson, Arizona: ACMPress, 1978, pp. 84–
96. url: http://portal.acm.org/citation.cfm?doid=512760.512770 (cit. on p. 24).

http://link.springer.com/10.1007/11823230_15
http://link.springer.com/10.1007/11823230_15
https://lwn.net/Articles/336255/
http://link.springer.com/10.1007/978-3-662-53413-7_5
https://dl.acm.org/doi/10.1145/2049697.2049700
http://portal.acm.org/citation.cfm?doid=512950.512973
http://link.springer.com/10.1007/BFb0025774
http://portal.acm.org/citation.cfm?doid=349299.349311
http://portal.acm.org/citation.cfm?doid=349299.349311
http://portal.acm.org/citation.cfm?doid=512760.512770

Bibliography 149

[CH88] Thierry Coquand and Gérard P. Huet. “The Calculus of Constructions”. In: Inf. Comput.
76.2/3 (1988), pp. 95–120 (cit. on p. 142).

[Cha+20] Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinetzky, and Xavier Rival.
“Shape Analysis”. In: Foundations and Trends in Programming Languages 6.1–2 (2020), pp. 1–
158. issn: 2325-1107, 2325-1131 (cit. on p. 68).

[Coh+09] Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte. “A Precise Yet Effi-
cient Memory Model For C”. In: Electronic Notes in Theoretical Computer Science 254 (Oct.
2009), pp. 85–103. issn: 15710661. url: https : / / linkinghub . elsevier . com / retrieve / pii /
S1571066109004150 (cit. on p. 143).

[Cou77] Patrick Cousot. Asynchronous Iterative Methods for Solving a Fixed Point System of Mono-
tone Equations in a Complete Lattice. RR-88. Laboratoire IMAG, Université scientifique et
médicale de Grenoble, Sept. 1977 (cit. on p. 90).

[CP01] Antoine Colin and Isabelle Puaut. “Worst-Case Execution Time Analysis of the RTEMS
Real-Time Operating System”. In: 13th Euromicro Conference on Real-Time Systems (ECRTS
’01). Delft, Netherlands: IEEE Computer Society, 2001, pp. 191–198 (cit. on p. 141).

[CR08] Bor-Yuh Evan Chang and Xavier Rival. “Relational Inductive Shape Analysis”. In: Proceed-
ings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’08). Vol. 43. San Francisco, USA: ACM, 2008, pp. 247–260. url: https://doi.org/10.
1145/1328438.1328469 (cit. on pp. 3, 14).

[CR13] Bor-Yuh Evan Chang and Xavier Rival. “Modular Construction of Shape-Numeric Analyz-
ers”. In: Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Dedi-
cated to David A. Schmidt on the Occasion of His Sixtieth Birthday. Vol. 129. EPTCS. Man-
hattan, Kansas, USA, Sept. 19, 2013. url: https://doi.org/10.4204/EPTCS.129.11 (cit. on
p. 25).

[CR99] Satish Chandra and Thomas Reps. “Physical Type Checking for C”. In: Proceedings of the
1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE ’99). Toulouse, France: ACM Press, 1999, pp. 66–75. url: http://portal.acm.
org/citation.cfm?doid=316158.316183 (cit. on pp. 4, 16, 68, 69).

[CRL99] Ramkrishna Chatterjee, Barbara G. Ryder, andWilliam Landi. “Relevant Context Inference”.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’99). Ed. by Andrew W. Appel and Alex Aiken. San Antonio, TX, USA:
ACM, 1999, pp. 133–146 (cit. on p. 13).

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
“Efficiently Computing Static Single Assignment Form and the Control DependenceGraph”.
In: ACM Trans. Program. Lang. Syst. 13.4 (1991), pp. 451–490 (cit. on p. 13).

[Dam+13] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and Oliver Schwarz.
“Formal Verification of Information Flow Security for a Simple Arm-Based Separation Ker-
nel”. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS ’13). Berlin, Germany: ACM Press, 2013, pp. 223–234. url: http://dl.acm.org/
citation.cfm?doid=2508859.2516702 (cit. on pp. 6, 112, 120, 140, 141, 143).

[Das00] Manuvir Das. “Unification-Based Pointer Analysis with Directional Assignments”. In: Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Im-
plementation (PLDI ’00). Vancouver, British Columbia, Canada: ACM Press, 2000, pp. 35–46.
url: http://portal.acm.org/citation.cfm?doid=349299.349309 (cit. on p. 12).

https://linkinghub.elsevier.com/retrieve/pii/S1571066109004150
https://linkinghub.elsevier.com/retrieve/pii/S1571066109004150
https://doi.org/10.1145/1328438.1328469
https://doi.org/10.1145/1328438.1328469
https://doi.org/10.4204/EPTCS.129.11
http://portal.acm.org/citation.cfm?doid=316158.316183
http://portal.acm.org/citation.cfm?doid=316158.316183
http://dl.acm.org/citation.cfm?doid=2508859.2516702
http://dl.acm.org/citation.cfm?doid=2508859.2516702
http://portal.acm.org/citation.cfm?doid=349299.349309

150 Bibliography

[Dav+16] Robin David, Sebastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-
Laure Potet, and Jean-Yves Marion. “BINSEC/SE: A Dynamic Symbolic Execution Toolkit
for Binary-Level Analysis”. In: IEEE 23rd International Conference on Software Analysis,
Evolution and Reengineering (SANER ’16). Suita: IEEE, Mar. 2016, pp. 653–656. url: http :
//ieeexplore.ieee.org/document/7476691/ (cit. on pp. 91, 132).

[Deu92] Alain Deutsch. “A Storeless Model of Aliasing and Its Abstractions Using Finite Represen-
tations of Right-Regular Equivalence Relations”. In: Proceedings of the 1992 International
Conference on Computer Languages (ICCL’92). Ed. by James R. Cordy and Mario Barbacci.
Oakland, California, USA: IEEE Computer Society, 1992, pp. 2–13 (cit. on pp. 15, 69).

[Deu94] Alain Deutsch. “Interprocedural May-Alias Analysis for Pointers: Beyond k-Limiting”. In:
Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and Im-
plementation (PLDI ’94). Ed. by Vivek Sarkar, Barbara G. Ryder, and Mary Lou Soffa. Or-
lando, Florida, USA: ACM, 1994, pp. 230–241 (cit. on pp. 15, 69).

[DGN13] Mads Dam, Roberto Guanciale, and Hamed Nemati. “Machine Code Verification of a Tiny
ARM Hypervisor”. In: Proceedings of the 3rd International Workshop on Trustworthy Embed-
ded Devices - TrustED ’13. The 3rd International Workshop. Berlin, Germany: ACM Press,
2013, pp. 3–12. url: http://dl.acm.org/citation.cfm?doid=2517300.2517302 (cit. on pp. 117,
140, 142, 143).

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. “Type-Based Alias Analysis”. In:
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation (PLDI ’98). Montreal, Quebec, Canada: ACM Press, 1998, pp. 106–117. url:
http://portal.acm.org/citation.cfm?doid=277650.277670 (cit. on pp. 16, 40, 68, 69, 143).

[Dor+08] N. Dor, J. Field, D. Gopan, T. Lev-Ami, A. Loginov, R. Manevich, G. Ramalingam, T. Reps,
N. Rinetzky, M. Sagiv, R. Wilhelm, E. Yahav, and G. Yorsh. “Automatic Verification of
Strongly Dynamic Software Systems”. In: Verified Software: Theories, Tools, Experiments.
Ed. by Bertrand Meyer and Jim Woodcock. Vol. 4171. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 82–92. url: http://link.springer.
com/10.1007/978-3-540-69149-5_11 (cit. on p. 14).

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. “A Local Shape Analysis Based
on Separation Logic”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’06). Ed. by Holger Hermanns and Jens Palsberg. Vol. 3920. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 287–302. url:
http://link.springer.com/10.1007/11691372_19 (cit. on pp. 3, 14, 15).

[DPV11] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. “Predator: A Practical Tool for Checking
Manipulation of Dynamic Data Structures Using Separation Logic”. In: Computer Aided
Verification - 23rd International Conference (CAV ’11). Ed. by Ganesh Gopalakrishnan and
Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 372–378. url: http://link.springer.com/10.1007/978-3-642-
22110-1_29 (cit. on pp. 3, 14).

[DPV13] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. “Byte-Precise Verification of Low-Level List
Manipulation”. In: Static Analysis - 20th International Symposium (SAS ’13). Ed. by Francesco
Logozzo and Manuel Fähndrich. Red. by David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C.
Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe
Y. Vardi, and Gerhard Weikum. Vol. 7935. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 215–237. url: http://link.springer.com/10.
1007/978-3-642-38856-9_13 (cit. on pp. 14, 15, 68).

http://ieeexplore.ieee.org/document/7476691/
http://ieeexplore.ieee.org/document/7476691/
http://dl.acm.org/citation.cfm?doid=2517300.2517302
http://portal.acm.org/citation.cfm?doid=277650.277670
http://link.springer.com/10.1007/978-3-540-69149-5_11
http://link.springer.com/10.1007/978-3-540-69149-5_11
http://link.springer.com/10.1007/11691372_19
http://link.springer.com/10.1007/978-3-642-22110-1_29
http://link.springer.com/10.1007/978-3-642-22110-1_29
http://link.springer.com/10.1007/978-3-642-38856-9_13
http://link.springer.com/10.1007/978-3-642-38856-9_13

Bibliography 151

[ECS20] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. “Is Rust Used Safely by Software
Developers?” In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE ’20). Seoul, South Korea: ACM, June 27, 2020, pp. 246–257. url: https:
//dl.acm.org/doi/10.1145/3377811.3380413 (cit. on p. 2).

[EKJ95] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole Jr. “Exokernel: An Operat-
ing System Architecture for Application-Level Resource Management”. In: Proceedings of
the Fifteenth ACM Symposium on Operating System Principles (SOSP ’95). Ed. by Michael B.
Jones. Copper Mountain Resort, Colorado, USA: ACM, 1995, pp. 251–266 (cit. on p. 139).

[Ell+18] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. “Checked C:
Making C Safe by Extension”. In: 2018 IEEE Cybersecurity Development (SecDev ’18). Cam-
bridge, MA: IEEE, Sept. 2018, pp. 53–60. url: https://doi.org/10.1109/SecDev.2018.00015
(cit. on pp. 17, 69).

[FB] Bryan Ford and Erich Stefan Boleyn. Multiboot Specification. url: https://www.gnu.org/
software/grub/manual/multiboot/multiboot.html (visited on 08/03/2021) (cit. on p. 112).

[Fer+17] Andrew Ferraiuolo, AndrewBaumann, Chris Hawblitzel, and Bryan Parno. “Komodo: Using
Verification to Disentangle Secure-Enclave Hardware from Software”. In: Proceedings of the
26th Symposium on Operating Systems Principles. SOSP ’17: ACM SIGOPS 26th Symposium
on Operating Systems Principles. Shanghai China: ACM, Oct. 14, 2017, pp. 287–305. url:
https://dl.acm.org/doi/10.1145/3132747.3132782 (cit. on pp. 115, 139–141, 143, 144).

[FN79] Richard J. Feiertag and Peter G. Neumann. “The Foundations of a Provably Secure Operat-
ing System (PSOS)”. In: 1979 International Workshop on Managing Requirements Knowledge
(MARK ’19) (1979). url: https://ieeexplore.ieee.org/document/8817256 (cit. on p. 143).

[FP91] Tim Freeman and Frank Pfenning. “Refinement Types for ML”. In: Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI
’91). Ed. by David S. Wise. ACM, 1991, p. 10. url: https://doi.org/10.1145/113445.113468
(cit. on p. 16).

[GH96] Rakesh Ghiya and Laurie J. Hendren. “Is It a Tree, a DAG, or a Cyclic Graph? A Shape Anal-
ysis for Heap-Directed Pointers in C”. In: 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’96). Ed. by Hans-Juergen Boehm and Guy L. Steele
Jr. St. Petersburg Beach, Florida, USA: ACM Press, 1996, pp. 1–15 (cit. on pp. 15, 16, 68).

[Gu+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan NewmanWu,
Shu-Chun Weng, Haozhong Zhang, and Yu Guo. “Deep Specifications and Certified Ab-
straction Layers”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). Vol. 50. ACM, 2015, pp. 595–608 (cit. on
pp. 115, 141, 144).

[Gu+16] Ronghui Gu, Zhong Shao, HaoChen, Xiongnan (Newman)Wu, JieungKim, Vilhelm Sjöberg,
and David Costanzo. “CertiKOS: An Extensible Architecture for Building Certified Concur-
rent OS Kernels”. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ’16). Vol. 16. Savannah, GA, USA, 2016, pp. 653–669. url: https://dl.acm.org/
doi/10.5555/3026877.3026928 (cit. on pp. 4, 140, 142, 144).

[Hab+12] Peter Habermehl, Lukáš Holík, Adam Rogalewicz, Jiří Šimáček, and Tomáš Vojnar. “Forest
Automata for Verification of Heap Manipulation”. In: Formal Methods in System Design 41.1
(Aug. 2012), pp. 83–106. issn: 0925-9856, 1572-8102. url: http://link.springer.com/10.1007/
s10703-012-0150-8 (cit. on pp. 3, 15).

https://dl.acm.org/doi/10.1145/3377811.3380413
https://dl.acm.org/doi/10.1145/3377811.3380413
https://doi.org/10.1109/SecDev.2018.00015
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://dl.acm.org/doi/10.1145/3132747.3132782
https://ieeexplore.ieee.org/document/8817256
https://doi.org/10.1145/113445.113468
https://dl.acm.org/doi/10.5555/3026877.3026928
https://dl.acm.org/doi/10.5555/3026877.3026928
http://link.springer.com/10.1007/s10703-012-0150-8
http://link.springer.com/10.1007/s10703-012-0150-8

152 Bibliography

[Hei+08] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean. “Applying
Formal Methods to a Certifiably Secure Software System”. In: IEEE Trans. Software Eng. 34.1
(2008), pp. 82–98 (cit. on p. 143).

[HL07] Ben Hardekopf and Calvin Lin. “The Ant and the Grasshopper: Fast and Accurate Pointer
Analysis forMillions of Lines of Code”. In: Proceedings of the 2007 ACM SIGPLANConference
on Programming Language Design and Implementation (PLDI ’07). San Diego, California,
USA: ACM Press, 2007, p. 290. url: http : / /portal .acm.org/citation.cfm?doid=1250734.
1250767 (cit. on p. 13).

[HL11] Ben Hardekopf and Calvin Lin. “Flow-Sensitive Pointer Analysis for Millions of Lines of
Code”. In: Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO ’11). Washington, DC, USA: IEEE Computer Society, 2011,
pp. 289–298. url: http://dl.acm.org/citation.cfm?id=2190025.2190075 (cit. on p. 13).

[Hol+13] Lukáš Holík, Ondřej Lengál, Adam Rogalewicz, Jiří Šimáček, and Tomáš Vojnar. “Fully Au-
tomated Shape Analysis Based on Forest Automata”. In: Computer Aided Verification - 25th
International Conference (CAV ’13). Ed. by Natasha Sharygina and Helmut Veith. Red. by
David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John
C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Su-
dan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Vol. 8044.
Lecture Notes in Computer Science. Saint Petersburg, Russia: Springer Berlin Heidelberg,
2013, pp. 740–755. url: http://link.springer.com/10.1007/978-3-642-39799-8_52 (cit. on
pp. 15, 16).

[ILR20] Hugo Illous, Matthieu Lemerre, and Xavier Rival. “Interprocedural Shape Analysis Using
Separation Logic-Based Transformer Summaries”. In: Static Analysis - 27th International
Symposium (SAS ’20). Ed. by David Pichardie and Mihaela Sighireanu. Vol. 12389. Lecture
Notes in Computer Science. Virtual Event: Springer, 2020, pp. 248–273. url: https://doi.
org/10.1007/978-3-030-65474-0%5C_12 (visited on 01/22/2022) (cit. on p. 15).

[IsoC18] International Organization for Standardization (ISO). The ISO C Standard (C17). 2018. url:
https://www.iso.org/standard/74528.html (cit. on p. 90).

[Jon81] Hans B. M. Jonkers. “Abstract Storage Structures”. In: Algorithmic Languages. Ed. by de
Bakker and van Vliet. IFIP, North Holland Publishing Company, 1981, pp. 321–343 (cit. on
pp. 15, 69).

[Jou+15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, andDavid Pichardie.
“A Formally-Verified C Static Analyzer”. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. Ed. by Sriram K. Rajamani and David Walker. ACM, 2015, pp. 247–259
(cit. on p. 142).

[Ken07] Andrew Kennedy. “Compiling with Continuations, Continued”. In: Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’07). Ed. by Ralf
Hinze and Norman Ramsey. ACM, 2007, pp. 177–190. url: https://doi.org/10.1145/1291151.
1291179 (cit. on p. 35).

[Kle+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Der-
rin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and SimonWinwood. “seL4: Formal Verification of an OS Kernel”. In: Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09). ACM,
2009, pp. 207–220 (cit. on pp. 2, 4, 115, 139–141, 143).

http://portal.acm.org/citation.cfm?doid=1250734.1250767
http://portal.acm.org/citation.cfm?doid=1250734.1250767
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://link.springer.com/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/978-3-030-65474-0%5C_12
https://doi.org/10.1007/978-3-030-65474-0%5C_12
https://www.iso.org/standard/74528.html
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/1291151.1291179

Bibliography 153

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. “Comprehensive Formal Verification of an OS Microkernel”.
In: ACM Trans. Comput. Syst. 32.1 (2014), 2:1–2:70 (cit. on pp. 140–143).

[KN19] Steve Klabnik and Carol Nichols. The Rust Programming Language. San Francisco: No Starch
Press, 2019. 526 pp. (cit. on p. 2).

[KSV10] Jörg Kreiker, Helmut Seidl, and Vesal Vojdani. “Shape Analysis of Low-Level C with Over-
lapping Structures”. In: Verification, Model Checking, and Abstract Interpretation, 11th Inter-
national Conference (VMCAI ’10). Ed. by Gilles Barthe and Manuel Hermenegildo. Red. by
David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John
C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Su-
dan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Vol. 5944.
Madrid, Spain: Springer Berlin Heidelberg, 2010, pp. 214–230. url: http : / / link.springer .
com/10.1007/978-3-642-11319-2_17 (cit. on p. 105).

[KZV09] Johannes Kinder, Florian Zuleger, and Helmut Veith. “An Abstract Interpretation-Based
Framework for Control Flow Reconstruction from Binaries”. In: Verification, Model Check-
ing, and Abstract Interpretation, 10th International Conference (VMCAI ’09). Ed. by Neil D.
Jones and Markus Müller-Olm. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2009, pp. 214–228. url: https://doi.org/10.1007/978-3-540-93900-9_19 (cit. on
p. 104).

[Lat05] Chris Lattner. “Macroscopic Data Structure Analysis and Optimization”. University of Illi-
nois, 2005 (cit. on p. 16).

[LCR10] Vincent Laviron, Bor-Yuh Evan Chang, and Xavier Rival. “Separating Shape Graphs”. In:
19th European Symposium on Programming (ESOP ’10). Ed. by Andrew D. Gordon. Red. by
David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John
C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Su-
dan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum. Vol. 6012.
Lecture Notes in Computer Science. Paphos, Cyprus: Springer Berlin Heidelberg, 2010,
pp. 387–406. url: http : / / link . springer . com / 10 . 1007 / 978 - 3 - 642 - 11957 - 6 _ 21 (cit. on
pp. 25, 105).

[Lev+17] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal Dutta,
and Philip Alexander Levis. “Multiprogramming a 64kB Computer Safely and Efficiently”.
In: Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17). Shanghai,
China: ACM, 2017, pp. 234–251 (cit. on p. 139).

[Li+17] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. “Semantic-Directed
Clumping of Disjunctive Abstract States”. In: Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL ’17). Paris, France: ACM, 2017, p. 14.
url: https://doi.org/10.1145/3009837.3009881 (cit. on pp. 3, 14, 15, 101, 104).

[Li+21a] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “A Secure and
Formally Verified Linux KVMHypervisor”. In: 42nd IEEE Symposium on Security and Privacy
(SP ’21). San Francisco, CA, USA: IEEE, 2021, pp. 1782–1799 (cit. on pp. 140, 141, 144).

[Li+21b] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “Formally Ver-
ified Memory Protection for a Commodity Multiprocessor Hypervisor”. In: 30th USENIX
Security Symposium (USENIX Security ’21). Ed. by Michael Bailey and Rachel Greenstadt.
USENIX Association, 2021, pp. 3953–3970. url: https : / /www . usenix . org / conference /
usenixsecurity21/presentation/li-shih-wei (cit. on pp. 140, 144).

http://link.springer.com/10.1007/978-3-642-11319-2_17
http://link.springer.com/10.1007/978-3-642-11319-2_17
https://doi.org/10.1007/978-3-540-93900-9_19
http://link.springer.com/10.1007/978-3-642-11957-6_21
https://doi.org/10.1145/3009837.3009881
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei

154 Bibliography

[LRC15] Huisong Li, Xavier Rival, and Bor-Yuh Evan Chang. “Shape Analysis for Unstructured
Sharing”. In: Static Analysis - 22nd International Symposium (SAS ’15). Saint-Malo, France:
Springer, 2015, pp. 90–108. url: https://doi .org/10.1007/978- 3- 662- 48288- 9_6 (cit. on
pp. 15, 68, 101).

[LW94] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion of Subtyping”. In: ACM
Transactions on Programming Languages and Systems 16.6 (Nov. 1994), pp. 1811–1841. issn:
0164-0925, 1558-4593. url: https://dl.acm.org/doi/10.1145/197320.197383 (cit. on p. 41).

[Mar+07] Mark Marron, Deepak Kapur, Darko Stefanovic, and Manuel Hermenegildo. “A Static Heap
Analysis for Shape and Connectivity: Unified Memory Analysis: The Base Framework”. In:
Languages and Compilers for Parallel Computing, 19th International Workshop (LCPC ’06).
Ed. by George Almási, Călin Caşcaval, and Peng Wu. Vol. 4382. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 345–363. url: http://link.
springer.com/10.1007/978-3-540-72521-3_25 (cit. on p. 16).

[McC10] William Terrence McCloskey. “Practical Shape Analysis”. PhD thesis. University of Califor-
nia, Berkeley, 2010 (cit. on p. 14).

[MF11] Jan Tobias Mühlberg and Leo Freitas. “Verifying FreeRTOS: From Requirements to Binary
Code”. In: Proceedings of the 11th International Workshop on Automated Verification of Crit-
ical Systems (AVoCS ’11). 2011. url: https : / / lirias .kuleuven .be / retrieve /172784/ (cit. on
p. 142).

[Mil19] Matt Miller. “Trends, Challenges and Strategic Shifts in the Software Vulnerability Miti-
gation Landscape” (BlueHat IL). Feb. 7, 2019. url: https://github.com/Microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%
20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%
20mitigation.pdf (cit. on p. 1).

[Min04] Antoine Miné. “Weakly Relational Numerical Abstract Domains”. PhD thesis. École Poly-
technique, Dec. 2004. url: https : / /pastel . archives - ouvertes . fr / tel - 00136630/document
(cit. on p. 25).

[Min06] Antoine Miné. “Field-Sensitive Value Analysis of Embedded C Programs with Union Types
and Pointer Arithmetics”. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’06). New York, NY, USA:
ACM, 2006, pp. 54–63. url: http://doi.acm.org/10.1145/1134650.1134659 (cit. on pp. 99,
105).

[Min17] Antoine Miné. “Tutorial on Static Inference of Numeric Invariants by Abstract Interpreta-
tion”. In: Foundations and Trends in Programming Languages 4.3-4 (2017), pp. 120–372. issn:
2325-1107, 2325-1131. url: http://www.nowpublishers.com/article/Details/PGL-034 (cit.
on pp. 24, 90).

[Mit14] Mitre Corporation. CVE-2014-0160. 2014. url: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0160 (visited on 08/02/2021) (cit. on p. 1).

[Mit20] Mitre Corporation. 2020 CWE Top 25 Most Dangerous Software Weaknesses. 2020. url: http:
//cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html (visited on 07/16/2021) (cit. on
p. 1).

[Mit21a] Mitre Corporation. CVE-2021-22555. 2021. url: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2021-22555 (visited on 08/02/2021) (cit. on p. 1).

[Mit21b] Mitre Corporation. CVE-2021-3156. 2021. url: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-3156 (visited on 08/02/2021) (cit. on p. 1).

https://doi.org/10.1007/978-3-662-48288-9_6
https://dl.acm.org/doi/10.1145/197320.197383
http://link.springer.com/10.1007/978-3-540-72521-3_25
http://link.springer.com/10.1007/978-3-540-72521-3_25
https://lirias.kuleuven.be/retrieve/172784/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://pastel.archives-ouvertes.fr/tel-00136630/document
http://doi.acm.org/10.1145/1134650.1134659
http://www.nowpublishers.com/article/Details/PGL-034
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
http://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-22555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-22555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156

Bibliography 155

[Mor+02] GregMorrisett, James Cheney, DanGrossman,Michael Hicks, and YanlingWang. “Cyclone:
A Safe Dialect of C”. In: Proceedings of the General Track: 2002 USENIX Annual Technical
Conference (USENIX ’02). Monterey, California, USA: USENIX, 2002, p. 15. url: http://www.
usenix.org/publications/library/proceedings/usenix02/jim.html (cit. on pp. 17, 69).

[Nec+05] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer.
“CCured: Type-Safe Retrofitting of Legacy Software”. In:ACMTransactions on Programming
Languages and Systems 27.3 (May 2005), pp. 477–526. issn: 0164-0925, 1558-4593 (cit. on
pp. 17, 69).

[Nel+19] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
“Scaling Symbolic Evaluation for Automated Verification of Systems Code with Serval”.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19).
Huntsville, Ontario, Canada: ACM Press, 2019, pp. 225–242. url: http://dl.acm.org/citation.
cfm?doid=3341301.3359641 (cit. on pp. 6, 112, 117, 120, 140–142, 144).

[Nic+21] Olivier Nicole, Matthieu Lemerre, Sébastien Bardin, and Xavier Rival. “No Crash, No Ex-
ploit: Automated Verification of Embedded Kernels”. In: IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’21). 2021 (cit. on pp. 7, 130, 132).

[NLR22] Olivier Nicole, Matthieu Lemerre, and Xavier Rival. “Lightweight Shape Analysis Based
on Physical Types”. In: 23rd International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’22). 2022 (cit. on pp. 7, 100).

[Nor20] Jan Nordholz. “Design of a Symbolically Executable Embedded Hypervisor”. In: Fifteenth
EuroSys Conference 2020 (EuroSys ’20). Heraklion, Greece, 2020, p. 16. url: https://doi.org/
10.1145/3342195.3387516 (cit. on pp. 6, 112, 117, 120, 138, 140–142, 144).

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer, 2002 (cit. on
p. 142).

[PSS12] Wolfgang J. Paul, Sabine Schmaltz, and Andrey Shadrin. “Completing the Automated Veri-
fication of a Small Hypervisor - Assembler Code Verification”. In: Software Engineering and
Formal Methods - 10th International Conference (SEFM ’12). Ed. by George Eleftherakis, Mike
Hinchey, and Mike Holcombe. Vol. 7504. Lecture Notes in Computer Science. Thessaloniki,
Greece: Springer, 2012, pp. 188–202. url: https : / / doi . org / 10 . 1007 / 978 - 3 - 642 - 33826 -
7%5C_13 (cit. on pp. 140–143).

[QS82] J. P. Queille and J. Sifakis. “Specification and Verification of Concurrent Systems in CESAR”.
In: International Symposium on Programming. Ed. by Mariangiola Dezani-Ciancaglini and
Ugo Montanari. Red. by G. Goos, J. Hartmanis, W. Brauer, P. Brinch Hansen, D. Gries, C.
Moler, G. Seegmüller, J. Stoer, and N. Wirth. Vol. 137. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 337–351. url: http://link.springer.
com/10.1007/3-540-11494-7_22 (cit. on p. 2).

[Rep+10] Thomas W. Reps, Junghee Lim, Aditya V. Thakur, Gogul Balakrishnan, and Akash Lal.
“There’s Plenty of Room at the Bottom: Analyzing and Verifying Machine Code”. In: Com-
puter Aided Verification, 22nd International Conference (CAV ’10). Ed. by Tayssir Touili, By-
ron Cook, and Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Edinburgh,
UK: Springer, 2010, pp. 41–56. url: https://doi.org/10.1007/978- 3- 642- 14295- 6%5C_6
(cit. on p. 142).

http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://dl.acm.org/citation.cfm?doid=3341301.3359641
http://dl.acm.org/citation.cfm?doid=3341301.3359641
https://doi.org/10.1145/3342195.3387516
https://doi.org/10.1145/3342195.3387516
https://doi.org/10.1007/978-3-642-33826-7%5C_13
https://doi.org/10.1007/978-3-642-33826-7%5C_13
http://link.springer.com/10.1007/3-540-11494-7_22
http://link.springer.com/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-642-14295-6%5C_6

156 Bibliography

[Rey02] J.C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. In: Proceed-
ings 17th Annual IEEE Symposium on Logic in Computer Science (LICS ’02). Copenhagen,
Denmark: IEEE Comput. Soc, 2002, pp. 55–74. url: http://ieeexplore.ieee.org/document/
1029817/ (cit. on p. 14).

[Ric10] Raymond J. Richards. “Modeling and Security Analysis of a Commercial Real-Time Operat-
ing System Kernel”. In: Design and Verification of Microprocessor Systems for High-Assurance
Applications. Ed. by David S. Hardin. Boston, MA: Springer US, 2010, pp. 301–322. url:
https://doi.org/10.1007/978-1-4419-1539-9_10 (cit. on pp. 115, 139, 141, 142).

[Ric53] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Problems”. In:
Transactions of the American Mathematical Society 74.2 (1953), pp. 358–366. issn: 0002-9947,
1088-6850. url: https://www.ams.org/tran/1953- 074- 02/S0002- 9947- 1953- 0053041- 6/
(cit. on p. 2).

[RKJ10] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Low-Level Liquid Types”. In:
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’10). Madrid, Spain: Association for Computing Machinery, 2010,
pp. 131–144 (cit. on pp. 16, 68, 69).

[RS94] K. Ramamritham and J.A. Stankovic. “Scheduling Algorithms and Operating Systems Sup-
port for Real-Time Systems”. In: Proceedings of the IEEE 82.1 (Jan. 1994), pp. 55–67. issn:
1558-2256 (cit. on pp. 139, 142).

[Rus81] John M. Rushby. “Design and Verification of Secure Systems”. In: Proceedings of the Eighth
Symposium on Operating System Principles (SOSP ’81). Ed. by John Howard and David P.
Reed. Pacific Grove, California, USA: ACM, 1981, pp. 12–21. url: https://doi.org/10.1145/
800216.806586 (cit. on pp. 139, 141).

[SB15] Yannis Smaragdakis and George Balatsouras. “Pointer Analysis”. In: Foundations and Trends
in Programming Languages 2.1 (2015), pp. 1–69. issn: 2325-1107, 2325-1131. url: http : / /
www.nowpublishers.com/article/Details/PGL-014 (cit. on p. 12).

[SBL11] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. “Pick Your ContextsWell: Un-
derstanding Object-Sensitivity”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’11). Austin, Texas, USA: ACM
Press, 2011, p. 17. url: http://portal.acm.org/citation.cfm?doid=1926385.1926390 (cit. on
p. 12).

[Sch+19] Simon Schuster, PeterWägemann, Peter Ulbrich, andWolfgang Schröder-Preikschat. “Prov-
ing Real-Time Capability of Generic Operating Systems by System-Aware Timing Analy-
sis”. In: 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
’19). Ed. by Björn B. Brandenburg. Montreal, Canada: IEEE, 2019, pp. 318–330 (cit. on p. 141).

[SMK13] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation Validation
for a Verified OS Kernel”. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). Ed. by Hans-Juergen Boehm and Cormac Flanagan. Seattle,
WA, USA: ACM, 2013, pp. 471–482 (cit. on pp. 140, 142, 143).

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. “Parametric Shape Analysis via 3-
Valued Logic”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’99). San Antonio, Texas, United States: ACM Press, 1999,
pp. 105–118 (cit. on pp. 3, 14, 15).

http://ieeexplore.ieee.org/document/1029817/
http://ieeexplore.ieee.org/document/1029817/
https://doi.org/10.1007/978-1-4419-1539-9_10
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://doi.org/10.1145/800216.806586
https://doi.org/10.1145/800216.806586
http://www.nowpublishers.com/article/Details/PGL-014
http://www.nowpublishers.com/article/Details/PGL-014
http://portal.acm.org/citation.cfm?doid=1926385.1926390

Bibliography 157

[Ste96] Bjarne Steensgaard. “Points-to Analysis in Almost Linear Time”. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’96).
New York, NY, USA: ACM, 1996, pp. 32–41. url: http://doi.acm.org/10.1145/237721.237727
(cit. on pp. 3, 12).

[SXX12] Lei Shang, Xinwei Xie, and Jingling Xue. “On-Demand Dynamic Summary-Based Points-
to Analysis”. In: Proceedings of the Tenth International Symposium on Code Generation and
Optimization (CHO ’12). San Jose, California: ACM Press, 2012, p. 264. url: http://dl.acm.
org/citation.cfm?doid=2259016.2259050 (cit. on p. 13).

[TvL84] Robert E. Tarjan and Jan van Leeuwen. “Worst-Case Analysis of Set Union Algorithms”. In:
Journal of the Association for Computing Machinery 31 (1984), pp. 245–281 (cit. on p. 35).

[Vas+13] A. Vasudevan, S. Chaki, Limin Jia, J. McCune, J. Newsome, and A. Datta. “Design, Imple-
mentation and Verification of an eXtensible and Modular Hypervisor Framework”. In: 2013
IEEE Symposium on Security and Privacy (SP ’13). Berkeley, CA: IEEE, May 2013, pp. 430–
444. url: http://ieeexplore.ieee.org/document/6547125/ (cit. on pp. 140, 144).

[Vas+16] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam Datta. “überSpark:
Enforcing Verifiable Object Abstractions for Automated Compositional Security Analysis
of a Hypervisor”. In: 25th USENIX Security Symposium (USENIX Security 16). 2016, pp. 87–
104. url: https : / / www . usenix . org / conference / usenixsecurity16 / technical - sessions /
presentation/vasudevan (cit. on pp. 115, 139–142, 144).

[WKP80] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. “Specification and Verifica-
tion of the UCLA Unix Security Kernel”. In: Communications of the ACM 23.2 (Feb. 1980),
pp. 118–131. issn: 0001-0782, 1557-7317. url: https://dl.acm.org/doi/10.1145/358818.358825
(cit. on pp. 115, 140–143).

[WL95] Robert P. Wilson and Monica S. Lam. “Efficient Context-Sensitive Pointer Analysis for C
Programs”. In: Proceedings of the ACM SIGPLAN’95 Conference on Programming Language
Design and Implementation (PLDI ’95). Ed. by DavidW.Wall. La Jolla, California, USA: ACM,
1995, p. 1 (cit. on p. 13).

[Xu+16] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. “A Practical
Verification Framework for Preemptive OS Kernels”. In: Computer Aided Verification. Ed. by
Swarat Chaudhuri andAzadeh Farzan. Vol. 9780. LectureNotes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 59–79. url: http://link.springer.com/10.1007/
978-3-319-41540-6_4 (visited on 04/28/2021) (cit. on pp. 115, 140–142, 144).

[YH11] Jean Yang and Chris Hawblitzel. “Safe to the Last Instruction: Automated Verification of a
Type-Safe Operating System”. In: Communications of the ACM 54.12 (Dec. 1, 2011), p. 123.
issn: 00010782. url: http://dl.acm.org/citation.cfm?doid=2043174.2043197 (cit. on pp. 115,
140, 141, 143).

http://doi.acm.org/10.1145/237721.237727
http://dl.acm.org/citation.cfm?doid=2259016.2259050
http://dl.acm.org/citation.cfm?doid=2259016.2259050
http://ieeexplore.ieee.org/document/6547125/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan
https://dl.acm.org/doi/10.1145/358818.358825
http://link.springer.com/10.1007/978-3-319-41540-6_4
http://link.springer.com/10.1007/978-3-319-41540-6_4
http://dl.acm.org/citation.cfm?doid=2043174.2043197

158 Bibliography

AppendixA
Detailed verification results of all
EducRTOS variants

We give here the detailed results of analyzing all 96 variants of EducRTOS as described in Section 10.5.
In all cases, the parameterized verification was successful, as well as the base case checking on a sample
user image containing two tasks. For each possible choice of compiler (Comp.), optimization flag (Opt.),
scheduling algorithm (Sched.), enabling or disabling dynamic thread creation (DT), and enabling or
disabling debug printing, we report the total analysis time, the number of (unique) instructions in the
CFG computed by the analysis (#instr.), and the peak memory usage (Mem.).

Comp. Opt. Sched. DT Print. Time (s) #instr. Mem. (MB)

gcc -O1 RR yes no 1.6 2649 283
gcc -O1 RR yes yes 40.5 2734 5704
gcc -O1 RR no no 1.3 2640 253
gcc -O1 RR no yes 40.5 2725 5671
gcc -O1 FP yes no 7.1 2695 672
gcc -O1 FP yes yes 72.6 2780 9287
gcc -O1 FP no no 5.5 2686 559
gcc -O1 FP no yes 70.2 2771 9072
gcc -O1 EDF yes no 8.3 2711 753
gcc -O1 EDF yes yes 72.3 2796 9185
gcc -O1 EDF no no 6.3 2702 602
gcc -O1 EDF no yes 70.9 2787 9259
clang -O1 RR yes no 1.8 2400 325
clang -O1 RR yes yes 26.9 2501 3608
clang -O1 RR no no 1.5 2387 280
clang -O1 RR no yes 26.3 2488 3598
clang -O1 FP yes no 4.1 2476 518
clang -O1 FP yes yes 28.9 2577 3792
clang -O1 FP no no 4.7 2463 538
clang -O1 FP no yes 45.5 2564 5696
clang -O1 EDF yes no 4.6 2484 517

159

160 APPENDIX A. Detailed verification results of all EducRTOS variants

clang -O1 EDF yes yes 29.5 2585 3802
clang -O1 EDF no no 5.4 2471 575
clang -O1 EDF no yes 46 2572 5689
gcc -O2 RR yes no 1.7 2705 278
gcc -O2 RR yes yes 41 2787 5705
gcc -O2 RR no no 1.4 2642 258
gcc -O2 RR no yes 40.1 2724 5695
gcc -O2 FP yes no 7 2750 669
gcc -O2 FP yes yes 72.8 2832 9091
gcc -O2 FP no no 5.4 2687 555
gcc -O2 FP no yes 70.5 2769 9120
gcc -O2 EDF yes no 8.2 2766 726
gcc -O2 EDF yes yes 73.3 2848 9108
gcc -O2 EDF no no 6.3 2703 586
gcc -O2 EDF no yes 70.9 2785 9168
clang -O2 RR yes no 1.7 2361 299
clang -O2 RR yes yes 26.4 2429 3566
clang -O2 RR no no 1.3 2423 264
clang -O2 RR no yes 25.8 2491 3557
clang -O2 FP yes no 4 2429 472
clang -O2 FP yes yes 28.6 2497 3737
clang -O2 FP no no 4.5 2490 515
clang -O2 FP no yes 44.8 2558 5704
clang -O2 EDF yes no 4.5 2436 488
clang -O2 EDF yes yes 29 2504 3747
clang -O2 EDF no no 5.1 2498 537
clang -O2 EDF no yes 45.4 2566 5715
gcc -O3 RR yes no 1.7 2705 288
gcc -O3 RR yes yes 29.9 2796 4232
gcc -O3 RR no no 1.4 2642 258
gcc -O3 RR no yes 29.2 2733 4281
gcc -O3 FP yes no 7 2739 647
gcc -O3 FP yes yes 52.5 2830 6805
gcc -O3 FP no no 5.4 2676 550
gcc -O3 FP no yes 51.2 2767 6795
gcc -O3 EDF yes no 8.5 2761 742
gcc -O3 EDF yes yes 53.1 2852 6850
gcc -O3 EDF no no 6.2 2698 592
gcc -O3 EDF no yes 51.9 2789 6678
clang -O3 RR yes no 1.7 2486 300
clang -O3 RR yes yes 25.4 2788 3516
clang -O3 RR no no 1.4 2423 264
clang -O3 RR no yes 25.2 2725 3401
clang -O3 FP yes no 4 2556 470
clang -O3 FP yes yes 45 2858 5691
clang -O3 FP no no 4.6 2492 523
clang -O3 FP no yes 43.4 2794 5419
clang -O3 EDF yes no 4.6 2564 508
clang -O3 EDF yes yes 45.5 2866 5658

APPENDIX A. Detailed verification results of all EducRTOS variants 161

clang -O3 EDF no no 5.2 2501 545
clang -O3 EDF no yes 44.5 2803 5438
gcc -Os RR yes no 1.7 2664 275
gcc -Os RR yes yes 32.4 2750 4612
gcc -Os RR no no 1.3 2652 244
gcc -Os RR no yes 31.8 2738 4514
gcc -Os FP yes no 6.6 2717 628
gcc -Os FP yes yes 55.1 2803 7063
gcc -Os FP no no 5.1 2705 529
gcc -Os FP no yes 54 2791 6930
gcc -Os EDF yes no 7.8 2730 699
gcc -Os EDF yes yes 57.1 2816 7302
gcc -Os EDF no no 5.8 2718 567
gcc -Os EDF no yes 54.2 2804 7062
clang -Os RR yes no 1.7 2368 312
clang -Os RR yes yes 20.7 2439 2864
clang -Os RR no no 1.4 2346 268
clang -Os RR no yes 20.3 2417 2841
clang -Os FP yes no 4.1 2437 484
clang -Os FP yes yes 23.1 2508 3046
clang -Os FP no no 4.5 2413 489
clang -Os FP no yes 34.2 2484 4320
clang -Os EDF yes no 4.7 2445 522
clang -Os EDF yes yes 23.7 2516 3022
clang -Os EDF no no 5.2 2423 552
clang -Os EDF no yes 34.9 2494 4408

162 APPENDIX A. Detailed verification results of all EducRTOS variants

Glossary

APE absence of privilege escalation. 4, 6, 7, 113, 114, 115, 116, 118, 119, 123, 125, 126, 127, 130, 132, 133,
135, 141, 145, 146

ARTE absence of runtime errors. 4, 6, 7, 112, 115, 117, 118, 119, 126, 127, 130, 132, 133, 135, 141, 145,
146

AST abstract syntax tree. 54, 88

CFG control flow graph. 89, 93, 94, 95, 96, 97, 98, 104, 105, 117, 133, 146

DAG direct acyclic graph. 14

MMU Memory Management Unit. 131

MPU Memory Protection Unit. 5

SLOC source lines of code: number of source code lines, excluding blank lines and comments. 88

TCB trusted computing base: set of components that are trusted, in the context of a security-critical
system or a verification method. 131

UMA Unified Memory Analysis. 16

163

ABSTRACT
As software is an essential component of many embedded systems or online information systems, its malfunction can cause harm
or security vulnerabilities. New bugs and vulnerabilities keep being discovered in existing software; many of those bugs and
vulnerabilities are caused by violations of memory safety. In particular, low-level code, written in languages that offer few safety
guarantees, is the most prone to this kind of bug. However, writing low-level code is sometimes necessary for performance or
direct access to hardware features. Formal methods can be used to verify the safety of low-level programs, but automated
analysis techniques to verify memory-related properties, such as shape analyses, still require important human effort, preventing
wide adoption. In this thesis, we propose a practical automated analysis based on types that express structural invariants on
memory down to the byte level. This analysis, which we formalize in the framework of abstract interpretation, offers a trade-off
between precise, flow-sensitive shape analyses and scalable, flow-insensitive pointer analyses. It can be applied to low-level
code with only a small amount of manual annotations. We show how the type-based abstraction can be complemented with
retained and staged points-to predicates to handle precisely common low-level code patterns, such as data structure
initialization. We demonstrate the effectiveness and practicality of the analysis by verifying the preservation of structural
invariants (implying spatial memory safety) on C and machine code programs, showing that it can be helpful in eliminating an
entire class of security vulnerabilities. We then apply our analysis to executables of embedded kernels and show that our type-
based invariants allow to verify absence of runtime errors and absence of privilege escalation. To do this, we introduce the
concept of implicit properties, i.e. properties which can be defined without reference to a specific program, and therefore lend
themselves well to automated verification; and we prove that absence of privilege escalation is an implicit property.
Parameterized verification, i.e. verification of the kernel independently from applicative code and data, poses many challenges,
such as the need to summarize memory, or the dependence on a complex precondition on the initial state. We propose a
methodology to solve them using our analysis technique. We apply this methodology to verify absence of runtime errors and
absence of privilege escalation on a full, unmodified embedded kernel with a high level of automation.

MOTS CLÉS

analyse statique, analyse mémoire, vérification d’OS

RÉSUMÉ
Les logiciels étant des composants essentiels de nombreux systèmes embarqués et de nombreux systèmes d'information, un
dysfonctionnement logiciel peut entraîner d'importants dommages ou des failles de sécurité. De nouveaux bugs et de nouvelles
vulnérabilités sont trouvés régulièrement dans les programmes existants; une grande partie d'entre eux est causeé par des
violations de la sûreté mémoire. En particulier, le code bas niveau, écrit dans des langages de programmation qui offrent peu de
garanties de sûreté, est le plus susceptible de contenir ce type de bug. Malgré cela, écrire dans un langage bas niveau reste
parfois nécessaire pour des raisons de performance, ou pour accéder directement aux fonctionnalités du matériel. Les méthodes
formelles peuvent permettre de vérifier la sûreté des programmes bas niveau, mais les techniques automatisées de vérification de
propriétés mémoire, telles que les analyses de forme, nécessitent encore un effort manuel important, ce qui est un obstacle à une
adoption large. Dans cette thèse, nous proposons une analyse automatisée facilement applicable, basée sur un système de types
exprimant des invariants structurels sur la mémoire, précis jusqu'au niveau de l'octet. Cette analyse, que nous formalisons dans
le cadre de l'interprétation abstraite, offre un compromis entre les analyses de forme, précises et sensibles au flot de contrôle, et
les analyses de pointeurs, qui sont insensibles au flot de contrôle mais passent très bien à l'échelle. Elle peut être appliquée à du
code bas niveau avec peu d'annotations manuelles. Nous montrons comment cette analyse basée sur les types peut être
complémentée par des prédicats de pointeurs conservés et reportés, afin de supporter précisément des motifs fréquents en code
bas niveau tels que l'initialisation de structures de données. Nous démontrons l'efficacité et l'applicabilité de l'analyse en
vérifiant la conservation d'invariants structurels (qui impliquent la sûreté mémoire spatiale) sur des programmes C et du code
machine, montrant qu'elle peut être utile pour éliminer toute une classe de failles de sécurité. Nous appliquons ensuite notre
analyse à des exécutables de noyaux embarqués, et nous montrons que nos invariants à base de types permettent de vérifier
l'absence d'erreurs à l'exécution et l'absence d'escalade de privilèges. Pour cela, nous introduisons le concept de propriété
implicite, c'est-à-dire de propriété qui peut être définie sans référence à un programme en particulier, qui se prêtent bien à la
vérification automatique; et nous montrons que l'absence d'escalade de privilèges est une propriété implicite. La vérification
paramétrée, c'est-à-dire la vérification de noyaux indépendamment du code et des données des applications, comporte plusieurs
défis, comme le besoin de résumer la mémoire ou bien la dépendance à une précondition complexe sur l'état initial. Nous
proposons une méthodologie pour les résoudre à l'aide de notre technique d'analyse. À l'aide de cette méthodologie, nous
vérifions l'absence d'erreurs à l'exécution et l'absence d'escalade de privilèges sur un noyau entier sans modification, avec un
haut niveau d'automatisation.

KEYWORDS

static analysis, memory analysis, OS verification

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 The need for formal verification of low-level code
	1.2 The need for automated analyses
	1.3 The case for a type-based memory abstraction
	1.4 Overview of the method and illustration on an OS kernel
	1.4.1 Motivation
	1.4.2 Kernel description
	1.4.3 Verification method

	1.5 Contributions and outline of the thesis

	I Type-based Shape Analysis
	2 Related work on static analysis of memory
	2.1 Pointer analysis
	2.1.1 Original works
	2.1.2 Enhancing precision with richer pointer abstractions
	2.1.3 Algorithmic improvements over Andersen-style analyses

	2.2 Shape analysis
	2.2.1 Shape analysis based on three-valued logic
	2.2.2 Shape analysis based on separation logic
	2.2.3 Other shape analysis techniques

	2.3 Type-based memory analyses

	3 Abstract interpretation framework
	3.1 General mathematical notations
	3.2 The While-memory language
	3.3 Notion of abstraction
	3.3.1 Operator abstraction
	3.3.2 Relational and non-relational numerical abstractions

	3.4 Abstract semantics of While-memory
	3.4.1 Abstract semantics of expressions
	3.4.2 Abstract semantics of simple statements
	3.4.3 Conditionals and loops

	3.5 Soundness of the abstract semantics

	4 Physical types
	4.1 Overview example and informal presentation
	4.2 Definitions
	4.2.1 Labellings
	4.2.2 Subtyping between address types
	4.2.3 Types as sets of values

	4.3 Typed semantics
	4.3.1 Typed semantics of expressions
	4.3.2 Typed semantics of statements

	4.4 Extending the type system: directions and pitfalls
	4.4.1 Invalid address subtyping rules
	4.4.2 Possible extensions

	5 Type-based shape abstract domain
	5.1 Informal overview of the abstraction
	5.2 Abstract physical types
	5.2.1 Motivation
	5.2.2 Definition
	5.2.3 Abstract subtyping
	5.2.4 Abstract join

	5.3 State abstraction
	5.3.1 Type-based shape domain
	5.3.2 Combined shape-numeric abstraction

	5.4 Abstract semantics
	5.4.1 Abstract semantics of expressions
	5.4.2 Soundness of expression semantics
	5.4.3 Abstract semantics of statements
	5.4.4 Soundness of the abstract semantics
	5.4.5 Approximation of aliasing relations

	5.5 Analysis example
	5.6 Conclusion and related work

	6 Retained and staged points-to predicates
	6.1 Informal overview
	6.2 Retained points-to predicates
	6.2.1 Abstraction
	6.2.2 Abstract semantics of expressions
	6.2.3 Abstract semantics of statements
	6.2.4 Soundness of the abstract semantics

	6.3 Staged points-to predicates
	6.3.1 Abstraction
	6.3.2 Example analysis using staged points-to predicates
	6.3.3 Abstract semantics of expressions
	6.3.4 Abstract semantics of statements
	6.3.5 Soundness of the abstract semantics

	6.4 Combining retained and staged points-to predicates
	6.5 Conclusion

	7 Practical analysis of C and machine code programs
	7.1 Analysis of C programs
	7.1.1 Semantics of programs with arbitrary control flow
	7.1.2 Under-specified behaviors
	7.1.3 Manual annotations required by the type-based shape domain

	7.2 Analysis of executables
	7.2.1 A semantics of machine code
	7.2.2 Incremental inference of control flow in the presence of dynamic jumps
	7.2.3 Delineation of functions
	7.2.4 Product with an ``array of bytes'' memory abstraction
	7.2.5 Numerical abstraction

	7.3 Experimental evaluation
	7.3.1 Research questions
	7.3.2 Methodology
	7.3.3 Results
	7.3.4 Discussion and conclusions

	7.4 Related work on static analysis of low-level code
	7.4.1 Analysis of machine code
	7.4.2 Analysis of low-level C

	II End-to-end Verification of Embedded Kernels
	8 Kernel semantics and implicit properties
	8.1 System loop
	8.1.1 Attacker model and trusted components
	8.1.2 Example kernel

	8.2 State properties
	8.2.1 Absence of run-time errors

	8.3 Absence of privilege escalation as a state property
	8.3.1 Definition
	8.3.2 A semantics suitable for parameterized verification

	8.4 Implicit properties
	8.5 In-context verification of kernels
	8.5.1 Abstracting the attacker-controlled transition
	8.5.2 Illustration on the example kernel

	9 Parameterized verification of OS kernels
	9.1 Shortcomings of in-context verification
	9.2 Method overview
	9.3 Illustration on the example kernel
	9.3.1 Lightweight type annotation
	9.3.2 Parameterized static analysis of the kernel
	9.3.3 Base case checking
	9.3.4 Discussion

	9.4 Differentiating boot and runtime code
	9.4.1 Difficulties with the verification of the initialization code
	9.4.2 Principle of the differentiated verification
	9.4.3 Base case checking

	9.5 Conclusion

	10 Kernel verification case study and experimental evaluation
	10.1 Experimental setup
	10.1.1 Asterios
	10.1.2 EducRTOS
	10.1.3 Analysis implementation
	10.1.4 Experimental methodology

	10.2 Soundness check
	10.2.1 Protocol
	10.2.2 Results
	10.2.3 Conclusions

	10.3 Real-Life Effectiveness
	10.3.1 Protocol
	10.3.2 Results
	10.3.3 Conclusions

	10.4 Evaluation of the method
	10.4.1 Protocol
	10.4.2 Results
	10.4.3 Conclusions

	10.5 Genericity
	10.5.1 Protocol
	10.5.2 Results
	10.5.3 Conclusions

	10.6 Automation and Scalability
	10.6.1 Protocol
	10.6.2 Conclusions

	11 Comparison with existing works on system and OS verification
	11.1 Classification and positioning
	11.1.1 Degree of automation
	11.1.2 Target property
	11.1.3 Trusted computing base (TCB) and verification comprehensiveness
	11.1.4 Features of verified kernels
	11.1.5 Verifying systems with unbounded memory

	11.2 List of kernel verification efforts

	Conclusion
	Bibliography
	A Detailed verification results of all EducRTOS variants
	Glossary

