
Runtime Detection of Data Races in OCaml with
ThreadSanitizer

Olivier Nicole
Tarides

Fabrice Buoro
Tarides

1 Introduction
The possibility to write truly parallel OCaml code
brings forth new possibilities of bugs. Among
those, data races (concurrent accesses to the same
data) are hard to detect and dangerous, as they
are non-deterministic, possibly silent, and can
lead to highly unexpected results. ThreadSanitizer
(TSan) is an open-source library and program in-
strumentation pass to reliably detect data races
at runtime [1]. TSan has been instrumental in
finding thousands of data races across many pro-
gramming languages. We will describe the core
principles of data race detection in TSan, explain
why it was challenging to apply it to OCaml, and
the adaptations needed to the runtime system. We
plan to demo how you can already use it in your
own code, and explain the limitations to be aware
of.

2 Example Usage
An OCaml programmer wrote a piece of code that
populates a table of clients from several sources
(database files, say). To gain time, they make it
multicore, using two Domains for two different
data sources:

1 let clients = Hashtbl.create 16
2 let free_id = Atomic.make 0
3

4 let clients1 = (* Some data source *)
5

6 let clients2 = (* Some data source *)
7

8 let record_clients =
9 Seq.iter (fun c ->

10 Hashtbl.add
11 clients
12 (Atomic.fetch_and_add free_id 1)
13 c)
14

15 let () =
16 let d = Domain.spawn
17 (fun () -> record_clients clients1)
18 in
19 record_clients clients2;
20 Domain.join d

Each incoming client is bound to a unique ID.
Our programmer was careful to use the Atomic

module for ID generation, to make sure the IDs
were really unique. Alas, they don’t know that the
Hashtbl module is not designed for concurrent
use (instead, they should have used domain-safe
structures from, e.g., the Saturn [2] library). Us-
ing a Hashtbl.t in parallel can cause data races
and lead to surprising results. For instance, two
domains adding elements in parallel can result in
some elements being silently dropped. The result-
ing bugs will cost a lot of time to debug as they are
non-deterministic. Worse still, the programmer’s
project may depend on libraries that use Hashtbl,
making them possibly unsafe to use in parallel,
without it being explicit in the documentation.

In contrast, if our developer builds their program
on a special opam switch with a TSan-enabled
compiler, all memory accesses will be instru-
mented with calls to the TSan runtime, which will
detect data races:

$ opam switch create tsan-tests ocaml-
option-tsan
$ opam install dune
$ dune exec ./clients.exe

and while running it will output a data race report
as shown in Listing 1.

TSan has detected two memory accesses, a write
and a read, to the same memory location, that are
not ordered. This constitutes a data race and TSan
reports it, along with the backtraces of both ac-
cesses. Here, clearly, something is going on with
the Hashtbl operations (called from line 9, high-
lighted), which is a serious hint for our developer.

3 How TSan Works
Executables are instrumented with calls to the
TSan runtime library, which tracks accesses to
shared data, and ordering relations established
between these accesses (usually called “happens-
before” relations). Internally the TSan runtime
associates to each OCaml domain (i.e., each sys-
tem thread) a vector clock. Comparing clocks
allows to establish ordering between events [3]. A
data race is reported every time two memory ac-
cesses are made to overlapping memory regions,
and:

==================
WARNING: ThreadSanitizer: data race (pid=790576)
 Write of size 8 at 0x7f42b37f57e0 by main thread (mutexes: write M86):
 #0 caml_modify runtime/memory.c:166 (clients.exe+0x58b87d)
 #1 camlStdlib__Hashtbl.resize_749 stdlib/hashtbl.ml:152 (clients.exe+0x536766)
 #2 camlStdlib__Seq.iter_329 stdlib/seq.ml:76 (clients.exe+0x4c8a87)
 #3 camlDune__exe__Clients.entry /workspace_root/clients.ml:9 (clients.exe+0x4650ef)
 #4 caml_program <null> (clients.exe+0x45fefe)
 #5 caml_start_program <null> (clients.exe+0x5a0ae7)

 Previous read of size 8 at 0x7f42b37f57e0 by thread T1 (mutexes: write M90):
 #0 camlStdlib__Hashtbl.key_index_1308 stdlib/hashtbl.ml:507 (clients.exe+0x53a625)
 #1 camlStdlib__Hashtbl.add_1312 stdlib/hashtbl.ml:511 (clients.exe+0x53a6f8)
 #2 camlStdlib__Seq.iter_329 stdlib/seq.ml:76 (clients.exe+0x4c8a87)
 #3 camlStdlib__Domain.body_703 stdlib/domain.ml:202 (clients.exe+0x50bf60)
 #4 caml_start_program <null> (clients.exe+0x5a0ae7)
 #5 caml_callback_exn runtime/callback.c:197 (clients.exe+0x56917b)
 #6 caml_callback runtime/callback.c:293 (clients.exe+0x569cb0)
 #7 domain_thread_func runtime/domain.c:1100 (clients.exe+0x56d37f)
 [...]

SUMMARY: ThreadSanitizer: data race runtime/memory.c:166 in caml_modify
==================
[...]
ThreadSanitizer: reported 2 warnings

Listing 1: Example output of the program (truncated).

• at least one of them is a write, and
• there is no established happens-before relation

between them.

In addition, each word of application memory
is associated with a number of “shadow words”.
Each shadow word contains information about a
recent memory access to that word, including a
scalar clock (projection of a vector clock). This
information is maintained as a “shadow state” in
a separate memory region, and updated at every
(instrumented) memory access.

Figure 1: Each domain holds a vector clock, and increments
its own clock upon every event (memory access, mutex
operation…). Some operations synchronize clocks between

domains.

In addition to memory accesses, operations such
as Domain.spawn and Domain.join, or mutex op-
erations, are also relevant for operation ordering,
as illustrated in Figure 1, and therefore are also
instrumented.

4 Challenges
Using ThreadSanitizer with OCaml thus requires
support from the compiler, to instrument the ex-
ecutables. We have developed a version of the
OCaml compiler that does just that. It instruments
all memory accesses (except for immutable val-
ues, which cannot cause data races), and domain
and mutex operations.

But, perhaps less expectedly, TSan also requires
the compiler to instrument function entries and
exits. This is required for TSan to be able to show
backtrace of previous memory accesses—recall
that TSan reports two backtraces, one for each
conflicting access, one of which is in the past.
TSan keeps a log of function entry and exit events
in order to be able to reconstruct such backtraces
when needed.

While instrumenting the entry point and return
point of functions is straightforward, functions
can also be exited due to an exception. And, since
OCaml 5, control flow can also switch back and
forth between an effect handler and the fiber
that performed the effect [4]. To let TSan know
about these function entries and exits, we take

the approach of emitting an instrumentation call
for each exited or entered frame, by unwinding
the stack upon every exception raising, effect per-
forming, or resuming of a continuation.

Another challenging point is that TSan is de-
signed to detect data races according to the
memory model of C and C++, namely C11. OCam-
l’s memory model is quite different. For instance,
non-atomic accesses in OCaml have more order-
ing guarantees than non-atomic accesses in C11.
 Therefore, the instrumentation of memory ac-
cessses, conceptually, must map OCaml programs
to C programs. This mapping must be such that
racy programs (in the OCaml sense) must be
mapped to racy programs (in the C11 sense) so
that OCaml data races are detected; and race-free
programs (in the OCaml sense) must be mapped
to race-free C programs because we don’t want
false positives. We found that there exists in fact a
mapping between the two models that has these
good properties.

5 Status and Limitations
ThreadSanitizer support has been integrated into
the OCaml compiler [5]. It has already allowed
to find data races in the Saturn and Domainslib
libraries and in the OCaml runtime itself. The in-
strumentation has a substantial performance cost:
it incurs a slowdown in the range 2x–7x, and
increases memory consumption by a factor of 4x–
7x. These are however lower than the reported
overheads for C/C++ (5x–15x for time and 5x–10x
for space).

In C, C++ and Go, binaries instrumented with
TSan can be freely linked with non-instrumented
binaries; for OCaml programs, this compatibility
property is lost due to the unwinding mech-
anism that records function entries and exits
upon exceptions and effects, which assumes in-
strumentation of all traversed code. Future work
could restore compatibility by recording which
functions are instrumented and which are not;
it would allow for easier deployment, since one
would no longer have to build all libraries and C
stubs with instrumentation.

6 Related Work
Static detection Static detection of data races
can be baked into the language, akin to the bor-
row checker in Rust [6]. Such approaches must
be adopted from the very start of a project. An-
other approach is to apply a static analysis to the
code [7, 8]. Static analyses inevitably produce ap-

proximations, which can cause a number of false
alarms or miss some data races.

Runtime detection Runtime detection tools
such as ThreadSanitizer [1] are generally easier to
apply in that they report very few false positives;
but the performance cost that they incur can be an
obstacle to deployment. Race detection based on
causally-precedes relation [9], rather than vector
clocks, can increase precision at the cost of a fur-
ther increased overhead.

Interleaving exploration Another approach is
to insert assertions in verified programs and test
as many interleavings as possible [10, 11, 12].
The methods to explore more interleavings can
be stochastic such as inserting thread yields or
injecting random delays; or the system can ex-
plore all interleavings [11]. Dscheck [13] is a
library for OCaml that replaces the standard
Atomic module and explores all interleavings,
using partial order reduction. While poten-
tially discovering more bugs through exhaustive
search, interleaving exploration has the drawback
of requiring programmer assertions. Exhaustive
search is also impractical on large-scale projects.
Parafuzz [14] combines Quickcheck-style prop-
erty-based testing, grey-box fuzzing—using AFL
—for coverage-guided input generation, and ran-
domization of the scheduling using the input from
AFL. Neither Parafuzz nor Dscheck currently ac-
count for the possible out-of-order reads resulting
from data races.

Automated test generation QCheck-Lin
and QCheck-STM [15] take the approach of
Quickcheck-style, random input generation to
exercise the tested API in parallel on multiple do-
mains. Unlike in the coverage-guided approach,
the API is treated as a black box. QCheck-Lin
simply checks that the test runs are linearizable
(i.e., can be explained by a sequential interleav-
ing). QCheck-STM goes further and checks that
the outputs conform to a model provided by
the programmer. The approach has allowed to
find numerous concurrency bugs in the OCaml
runtime and standard library. Such tests can be
instrumented with TSan to help detect silent data
races.

Bibliography
[1] K. Serebryany, A. Potapenko, T.

Iskhodzhanov, and D. Vyukov, “Dynamic
Race Detection with LLVM Compiler -
Compile-Time Instrumentation for Thread-

Sanitizer,” in Runtime Verification - Second
Int. Conf. (RV '11) in Lecture Notes in
Computer Science, vol. 7186, 2011, pp. 110–
114. [Online]. Available: https://doi.org/
10.1007/978-3-642-29860-8/_9

[2] “Saturn — Lock-free data structures for
multicore OCaml,” Multicore OCaml, 2023.
 Accessed: Jun. 1, 2023. [Online]. Available:
https://github.com/ocaml-multicore/saturn

[3] K. Joshi, “"go test -race" Un-
der the Hood,” in Strange Loop,
Qcon Sf, San Francisco, 2016. [On-
line]. Available: https://www.youtube.com/
watch?v=5erqWdlhQLA

[4] K. C. Sivaramakrishnan, S. Dolan, et al.,
“Retrofitting effect handlers onto OCaml,”
in PLDI '21: 42nd ACM SIGPLAN Int. Conf.
Program. Lang. Des. Implementation, Virtual
Event, Canada, June 20-25, 2021, 2021, pp.
206–221.

[5] O. Nicole, and F. Buoro, “Add ThreadSani-
tizer support,” The OCaml compiler repos-
itory. https://github.com/ocaml/ocaml/pull/
12114

[6] S. Klabnik, and C. Nichols, The Rust Pro-
gramming Language, San Francisco: No
Starch Press, 2019.

[7] M. Naik, A. Aiken, and J. Whaley, “Effec-
tive static race detection for Java,” in Proc.
27th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation (PLDI '06), Ottawa, On-
tario, Canada, Jun. 11, 2006, pp. 308–319.
 [Online]. Available: https://dl.acm.org/doi/
10.1145/1133981.1134018

[8] S. Blackshear, N. Gorogiannis, P. W.
O'Hearn, and I. Sergey, “RacerD: compo-
sitional static race detection,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, pp. 1–
28, 2018.

[9] Y. Smaragdakis, J. Evans, C. Sadowski, J.
Yi, and C. Flanagan, “Sound predictive
race detection in polynomial time,” in Proc.
39th ACM SIGPLAN-SIGACT Symp. Princ.
Program. Languages (POPL '12), 2012, pp.
387–400.

[10] K. Sen, “Race directed random test-
ing of concurrent programs,” in Proc.
29th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation (PLDI '08), Tucson

AZ USA, Jun. 7, 2008, pp. 11–21.
 [Online]. Available: https://dl.acm.org/doi/
10.1145/1375581.1375584

[11] M. Musuvathi, “Systematic concurrency
testing using CHESS,” in Proc. 6th Work-
shop Parallel Distrib. Systems: Testing,
Analysis, Debugging (ISSTA '08), Seat-
tle Washington, Jul. 20, 2008, p. 1.
 [Online]. Available: https://dl.acm.org/doi/
10.1145/1390841.1390851

[12] G. Li, S. Lu, M. Musuvathi, S. Nath,
and R. Padhye. (Oct. 27, 2019). Efficient
scalable thread-safety-violation detection:
finding thousands of concurrency bugs dur-
ing testing. Presented at SOSP '19: ACM
SIGOPS 27th Symp. Operating Syst. Princ.
[Online]. Available: https://dl.acm.org/doi/
10.1145/3341301.3359638

[13] “Dscheck — tool for testing concur-
rent OCaml programs,” 2023. Accessed:
Jun. 1, 2023. [Online]. Available: https://
github.com/ocaml-multicore/dscheck

[14] S. Padhiyar, A. Kamath, and g.-i. fami-
ly=Sivaramakrishnan given=KC, Parafuzz:
Coverage-guided Property Fuzzing for Mul-
ticore OCaml programs. Presented at Ocaml
Users Developers Workshop 2021, 2021.

[15] J. Midtgaard, O. Nicole, and N. Osborne,
“Multicoretests – Parallel Testing Libraries
for OCaml 5.0,” in Ocaml Users Developers
Workshop 2022, 2022.

https://doi.org/10.1007/978-3-642-29860-8/_9
https://doi.org/10.1007/978-3-642-29860-8/_9
https://github.com/ocaml-multicore/saturn
https://www.youtube.com/watch?v=5erqWdlhQLA
https://www.youtube.com/watch?v=5erqWdlhQLA
https://github.com/ocaml/ocaml/pull/12114
https://github.com/ocaml/ocaml/pull/12114
https://dl.acm.org/doi/10.1145/1133981.1134018
https://dl.acm.org/doi/10.1145/1133981.1134018
https://dl.acm.org/doi/10.1145/1375581.1375584
https://dl.acm.org/doi/10.1145/1375581.1375584
https://dl.acm.org/doi/10.1145/1390841.1390851
https://dl.acm.org/doi/10.1145/1390841.1390851
https://dl.acm.org/doi/10.1145/3341301.3359638
https://dl.acm.org/doi/10.1145/3341301.3359638
https://github.com/ocaml-multicore/dscheck
https://github.com/ocaml-multicore/dscheck

	Introduction
	Example Usage
	How TSan Works
	Challenges
	Status and Limitations
	Related Work
	Bibliography

