
Runtime Detection of Data Races in OCaml with
ThreadSanitizer

Olivier Nicole Fabrice Buoro

2023-09-11

Tarides

1



Goal of this talk

• What is ThreadSanitizer (TSan) and how is it useful?
• What is required to integrate TSan to OCaml programs?

2



Finally, we can have data races too

A data race is a race condition defined by:
• Two accesses are made to the same
memory location

• At least one of them is a write, and
• No order is enforced between them.

Event ordering is formalized in terms of a partial order
called happens-before. It is defined by the OCaml 5
memory model.

Data races are:
• Hard to detect (possibly silent)
• Hard to track down

3



Data race example

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

a := 1

!b

b := 1

!a

d1

d2

4



Data race example

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

a := 1

!b

b := 1

!a

d1

d2

4



Data race example

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

a := 1

!b

b := 1

!a

d1

d2

4



Data race example

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

a := 1

!b

b := 1

!a

d1

d2

4



ThreadSanitizer (TSan)

• Runtime data race detector (dynamic analysis, not static!)
• Initially developed for C++ by Google, now supported in

• C, C++ with GCC and clang
• Go
• Swift

• Battle-tested, already found1
• 1200+ races in Google’s codebase
• 100 in the Go stdlib
• 100+ in Chromium
• LLVM, GCC, OpenSSL, WebRTC, Firefox

• Requires to compile your program specially

1Numbers August 2015

5



let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):

#0 camlSimple_race.d2_274 simple_race.ml:7 (simple_race.exe+0x420a72)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:4 (simple_race.exe+0x420a22)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]

WARNING: ThreadSanitizer: data race (pid=3808831)
Read of size 8 at 0x8febf0 by thread T1 (mutexes: write M90):

#0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a92)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous write of size 8 at 0x8febf0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:3 (simple_race.exe+0x420a01)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]
==================
ThreadSanitizer: reported 2 warnings

6



let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:7 (simple_race.exe+0x420a72)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:4 (simple_race.exe+0x420a22)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]

WARNING: ThreadSanitizer: data race (pid=3808831)
Read of size 8 at 0x8febf0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a92)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous write of size 8 at 0x8febf0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:3 (simple_race.exe+0x420a01)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]
==================
ThreadSanitizer: reported 2 warnings

6



let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:7 (simple_race.exe+0x420a72)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:4 (simple_race.exe+0x420a22)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]

WARNING: ThreadSanitizer: data race (pid=3808831)
Read of size 8 at 0x8febf0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a92)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous write of size 8 at 0x8febf0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:3 (simple_race.exe+0x420a01)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]
==================
ThreadSanitizer: reported 2 warnings

6



let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

let () =
let h = Domain.spawn d2 in
let r1 = d1 () in
let r2 = Domain.join h in
assert (not (r1 = 0 && r2 = 0))

WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:7 (simple_race.exe+0x420a72)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:4 (simple_race.exe+0x420a22)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]

WARNING: ThreadSanitizer: data race (pid=3808831)
Read of size 8 at 0x8febf0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a92)
#1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
#2 caml_start_program <null> (simple_race.exe+0x47cf37)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

Previous write of size 8 at 0x8febf0 by main thread (mutexes: write M86):
#0 camlSimple_race.d1_271 simple_race.ml:3 (simple_race.exe+0x420a01)
#1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47cf37)

[...]
==================
ThreadSanitizer: reported 2 warnings

6



let d1 () =
Mutex.lock m;
a := 1;
let res = !b in
Mutex.unlock m;
res

let d2 () =
Mutex.lock m;
b := 1;
let res = !a in
Mutex.unlock m;
res

7



How TSan works



Two components

Program instrumentation

• Memory accesses
• Thread spawning
and joining

• Mutex locks and
unlocks, …


call−−−−−−−−−−−−−→ Runtime library

8



Race detector state machine

program

state

race detector

spawn

9



Race detector state machine

program

state

race detector

spawn

lock

9



Race detector state machine

program

state

race

race detector

spawn

lock

read

9



let d1 () =
Mutex.lock m;
a := 1;
let res = !b in
Mutex.unlock m;
res

let d2 () =
Mutex.lock m;
b := 1;
let res = !a in
Mutex.unlock m;
res

10



TSan’s internal state

• Each thread holds a vector clock (array
of N clocks, N = number of threads)

• Each thread increments its clock upon
every event (memory access, mutex
operation…)

• Some operations (e.g. mutex locks,
atomic reads) synchronize clocks
between threads

Comparing vector clocks allows to establish
happens-before relations.

Thread 1
t1 t2
0 0

1 0
Mutex.lock

2 0
write

3 0
read

4 0
Mutex.unlock

Thread 2
t1 t2
0 0

4 1

Mutex.lock

t1 = max(4, 0)
t2 = max(0, 1)

11



TSan’s internal state

• Each thread holds a vector clock (array
of N clocks, N = number of threads)

• Each thread increments its clock upon
every event (memory access, mutex
operation…)

• Some operations (e.g. mutex locks,
atomic reads) synchronize clocks
between threads

Comparing vector clocks allows to establish
happens-before relations.

Thread 1
t1 t2
0 0

1 0
Mutex.lock

2 0
write

3 0
read

4 0
Mutex.unlock

Thread 2
t1 t2
0 0

4 1

Mutex.lock

t1 = max(4, 0)
t2 = max(0, 1)

11



TSan’s internal state

• Each thread holds a vector clock (array
of N clocks, N = number of threads)

• Each thread increments its clock upon
every event (memory access, mutex
operation…)

• Some operations (e.g. mutex locks,
atomic reads) synchronize clocks
between threads

Comparing vector clocks allows to establish
happens-before relations.

Thread 1
t1 t2
0 0

1 0
Mutex.lock

2 0
write

3 0
read

4 0
Mutex.unlock

Thread 2
t1 t2
0 0

4 1

Mutex.lock

t1 = max(4, 0)
t2 = max(0, 1)

11



TSan’s internal state

• Each thread holds a vector clock (array
of N clocks, N = number of threads)

• Each thread increments its clock upon
every event (memory access, mutex
operation…)

• Some operations (e.g. mutex locks,
atomic reads) synchronize clocks
between threads

Comparing vector clocks allows to establish
happens-before relations.

Thread 1
t1 t2
0 0

1 0
Mutex.lock

2 0
write

3 0
read

4 0
Mutex.unlock

Thread 2
t1 t2
0 0

4 1

Mutex.lock

t1 = max(4, 0)
t2 = max(0, 1)

11



Shadow state

• Stores information about memory
accesses.

• 8-byte shadow word for an access:
TID clock pos w

• TID: accessor thread ID
• clock: scalar clock of accessor,

optimized vector clock
• pos: offset, size
• w: is write

• If shadow words are filled, evict one at
random

application

0x7fffffff

0x7f000000

shadow

0x1ffffffff

0x180000000

12



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
 do the accesses overlap?
 is one of them a write?
 are the thread IDs different?
 are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
 is one of them a write?
 are the thread IDs different?
 are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
✓ is one of them a write?
 are the thread IDs different?
 are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
✓ is one of them a write?
✓ are the thread IDs different?
 are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
✓ is one of them a write?
✓ are the thread IDs different?
✓ are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
✓ is one of them a write?
✓ are the thread IDs different?
✓ are they unordered by happens-before?



RACE

13



Race detection

Upon memory access, compare:
accessor’s clock with each existing shadow word
✓ do the accesses overlap?
✓ is one of them a write?
✓ are the thread IDs different?
✓ are they unordered by happens-before?



RACE

Limitations
• Runtime analysis: data races are only
detected on visited code paths

• Finite number of memory accesses re-
membered

13



So what do we need to support
TSan?



Instrumentation of memory accesses

let d1 () =
a := 1;
!b

(function d1 (param)

(store a 1)

(load_mut b))

14



Instrumentation of memory accesses

let d1 () =
a := 1;
!b

(function d1 (param)

(store a 1)

(load_mut b))

(function d1 (param)
(extcall "__tsan_write8" a)
(store a 1)

(extcall "__tsan_read8" b)
(load_mut b))

14



Function entries and exits

Recall: TSan gives the backtrace of both conflicting accesses

==================
WARNING: ThreadSanitizer: data race (pid=3080294)
Write of size 8 at 0x7f70feffebe0 by thread T1 (mutexes: write M90):
#0 camlSimple_race.d2_274 simple_race.ml:7 (simple_race.exe+0x420a72)
#1 camlStdlib__Domain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x44119f)
#2 caml_start_program <null> (simple_race.exe+0x47d1a7)
#3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x4461eb)
#4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a383)

Previous read of size 8 at 0x7f70feffebe0 by main thread (mutexes: write M86):
#0 camlSimple_race.main_277 simple_race.ml:13 (simple_race.exe+0x420b36)
#1 camlSimple_race.entry simple_race.ml:34 (simple_race.exe+0x420fcf)
#2 caml_program <null> (simple_race.exe+0x41ffb9)
#3 caml_start_program <null> (simple_race.exe+0x47d1a7)

[...]

15



Function entries and exits

let d1 () =
a := 1;
!b

(function d1 (param)

(extcall "__tsan_write8" a)
(store a 1)

(extcall "__tsan_read8" b)
(load_mut b))

• To be able to show backtraces of past program points, TSan requires us to instrument
function entries and exits

• Tail calls must be handled with care

16



Function entries and exits

let d1 () =
a := 1;
!b

(function d1 (param)

(extcall "__tsan_write8" a)
(store a 1)

(extcall "__tsan_read8" b)
(load_mut b))

(function d1 (param)
(extcall "__tsan_func_entry" return_addr)
(extcall "__tsan_write8" a)
(store a 1)

(extcall "__tsan_read8" b)
(let res (load_mut b)

(extcall "__tsan_func_exit")
res))

• To be able to show backtraces of past program points, TSan requires us to instrument
function entries and exits

• Tail calls must be handled with care

16



A first challenge: exceptions

• In C, it is easy to instrument function entries and exits
• C++ has to take care of exceptions
• OCaml has exceptions too:

• Any function can be exited due to an exception
• Unlike in C++, exceptions do not unwind the stack1

• TSan’s linear view of the call stack does not hold

1Fabrice Buoro, “OCaml behind the scenes: exceptions”

17

https://github.com/fabbing/obts_exn


A first challenge: exceptions

let race () = (* ... *)

let i () = raise Exit
let h () = i ()
let g () = h ()
let f () =
try g () with | Exit → race ()

» TSan backtrace:
- i
- h
- g
- f

f

g

h

i

18



A first challenge: exceptions

let race () = (* ... *)

let i () = raise Exit
let h () = i ()
let g () = h ()
let f () =
try g () with | Exit → race ()

» TSan backtrace:
- race
- i
- h
- g
- f

f

race

18



A first challenge: exceptions

let race () = (* ... *)

let i () = raise Exit
let h () = i ()
let g () = h ()
let f () =
try g () with | Exit → race ()

» TSan backtrace:
- f

f

g

h

i

18



A first challenge: exceptions

let race () = (* ... *)

let i () = raise Exit
let h () = i ()
let g () = h ()
let f () =
try g () with | Exit → race ()

» TSan backtrace:
- race
- f

f

race

18



A new challenger has arrived: Effect handlers

• Effect handlers are a generalisation of
exceptions: perform-ing an effect
jumps to the associated effect handler,
and additionally, a delimited
continuation makes it possible to
resume a computation 1

• As with exceptions, we must signal to
TSan the frames that are exited when
an effect is performed, and re-entered
when a continuation is resumed

let comp () =
print_string "0";
print_string (perform E);
print_string "3"

let () =
match_with comp () {
retc = Fun.id;
effc = (fun eff ->
match eff with
| E -> Some (fun k ->
print_string "1"; continue k "2";

print_string "4")↪→

| _ -> None);
exnc = raise; }

1KC Sivaramakrishnan et al, Retrofitting Effect Handlers onto OCaml, PLDI 2021

19

https://arxiv.org/pdf/2104.00250.pdf


Final boss: The OCaml memory model

• TSan can detect data races in programs following the C11 memory model
• OCaml’s memory model1 is different from the C11 one

• It offers more guarantees, such as Local Data Race Freedom implies Sequential
Consistency (LDRF-SC)

• To enforce the OCaml memory model, some operations are implemented particularly,
and special instructions are inserted in the code
• Bounding data race in space and time (LDRF-SC) requires fences at strategic
positions

• OCaml’s runtime, written in C, use strong instructions to prevent Undefined
Behavior at C level

1Dolan et al., Bounding Data Races In Space and Time, PLDI 2018

20

https://kcsrk.info/papers/pldi18-memory.pdf


Final boss: The OCaml memory model

OCaml C analogous

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

 Well-defined behavior

int a = 0, b = 0;

int d1() {
a = 1;
return b;

}

int d2() {
b = 1;
return a;

}

 Undefined behavior

21



Final boss: The OCaml memory model

OCaml C analogous

let a = ref 0 and b = ref 0

let d1 () =
a := 1;
!b

let d2 () =
b := 1;
!a

 Well-defined behavior

int a = 0, b = 0;

int d1() {
atomic_store_release(&a, 1);
return atomic_load_acquire(&b);

}

int d2() {
atomic_store_release(&b, 1);
return atomic_load_acquire(&a);

}

 Well-defined behavior

21



Final boss: The OCaml memory model

• TSan will not detect data races on C11 atomic operations
• We do not signal the “real” operations to TSan
• Instead, we map OCaml memory operations to C11 memory operations so that TSan
detects OCaml data races.

22



Current status

• Performance cost: about 2-7x slowdown (compared to 5-15x for C/C++)
• Memory consumption is increased by 4-7x (compared to 5-10x for C/C++)
• Only supported on 64 bits, non-Windows (TSan limitations), only x86_64 for now

23



Conclusion

• Merged in trunk, will be released with OCaml 5.2
• For convenience, there is a backport on OCaml 5.1 (currently rc3):

sudo apt install libunwind-dev
opam switch create 5.1.0~rc3+tsan

• We have used TSan to find races in
• Lockfree: ocaml-multicore/lockfree#40, ocaml-multicore/lockfree#39
• Domainslib: ocaml-multicore/domainslib#72, ocaml-multicore/domainslib#103
• The OCaml runtime: ocaml/ocaml#11040

• TSan has also been helpful to Irmin and Eio
• User feedback welcome

Acknowledgements
• Thanks to Anmol Sahoo, Jacques-Henri Jourdan, Luc Maranget, Guillaume Munch-Maccagnoni, and to the reviewers
of the TSan PR

• The first slides contain some information and diagrams from the great talk “go test -race” Under the Hood by Kavya
Joshi at Strange Loop 2016

https://github.com/ocaml-multicore/lockfree/pull/40
https://github.com/ocaml-multicore/lockfree/issues/39
https://github.com/ocaml-multicore/domainslib/issues/72
https://github.com/ocaml-multicore/domainslib/pull/103
https://github.com/ocaml/ocaml/issues/11040
https://www.youtube.com/watch?v=5erqWdlhQLA
https://www.youtube.com/watch?v=5erqWdlhQLA


Conclusion

• Merged in trunk, will be released with OCaml 5.2
• For convenience, there is a backport on OCaml 5.1 (currently rc3):

sudo apt install libunwind-dev
opam switch create 5.1.0~rc3+tsan

• We have used TSan to find races in
• Lockfree: ocaml-multicore/lockfree#40, ocaml-multicore/lockfree#39
• Domainslib: ocaml-multicore/domainslib#72, ocaml-multicore/domainslib#103
• The OCaml runtime: ocaml/ocaml#11040

• TSan has also been helpful to Irmin and Eio
• User feedback welcome

Acknowledgements
• Thanks to Anmol Sahoo, Jacques-Henri Jourdan, Luc Maranget, Guillaume Munch-Maccagnoni, and to the reviewers
of the TSan PR

• The first slides contain some information and diagrams from the great talk “go test -race” Under the Hood by Kavya
Joshi at Strange Loop 2016

Thanks!

https://github.com/ocaml-multicore/lockfree/pull/40
https://github.com/ocaml-multicore/lockfree/issues/39
https://github.com/ocaml-multicore/domainslib/issues/72
https://github.com/ocaml-multicore/domainslib/pull/103
https://github.com/ocaml/ocaml/issues/11040
https://www.youtube.com/watch?v=5erqWdlhQLA
https://www.youtube.com/watch?v=5erqWdlhQLA

	How TSan works
	So what do we need to support TSan?

