
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Modular macros (demo proposal)
Olivier Nicole

Paris-Saclay University
nicole@ensta.fr

Leo White
Jane Street Capital
leo@lpw25.net

Jeremy Yallop
University of Cambridge

jeremy.yallop@cl.cam.ac.uk

1 Modular macros
Modular macros extend OCaml with support for generative,
typed, compile-timemetaprogramming. A previous presenta-
tion [5] introduced the high-level design of modular macros,
which we have since implemented in a fork of the OCaml
compiler.

Modular macros inherit the basic MetaOCaml design [2],
with primitives for quoting code and combining code via
splicing:

<< e >> $e

Following MetaOCaml, modular macros combine strong
guarantees with expressive power: they are generative, hy-
gienic, and typed, and the full OCaml language, with effects,
modules, data types, and polymorphism, can be used to gen-
erate quoted programs.
Departing from MetaOCaml, and inspired by Racket [1],

modular macros execute entirely during the compilation
phase, expanding into macro-free OCaml programs.

This change in execution model leads to a cascade of addi-
tional differences in the design and implementation. Modular
macros cannot support cross-stage persistence (CSP) of ar-
bitrary values, since the compile-time execution context in
which macros are expanded no longer exists when the fully-
expanded program is executed. However, modular macros
do support a more limited form of CSP that restricts quoted
identifiers to top-level bindings in modules. Full support for
this feature involves a closure conversion transformation
to ensure that identifiers are accessible even after module
signature ascription. (See [5] for details.)

Despite the differences, many substantial MetaOCaml pro-
grams, such as the Strymonas library [3], can be ported to
modular macros with only local syntactic changes.

2 The demo
We propose demonstrating the modular macros implementa-
tion by interactive construction of a small library for typed
printf-style printing with compile-time optimizations.

Modular macros integrate harmoniously with the OCaml
toolchain; our library uses the standard ppx preprocessor
to transform a convenient syntax for format strings into a
typed GADT representation:

[%fmt "(%b,%b)"]

{

Conference’17, July 2017, Washington, DC, USA
.

Cat (Lit "(", Cat (Bool,

Cat (Lit ",", Cat (Bool, Lit ")"))))

After this untyped syntactic transformation, typed modu-
lar macros perform the heavy lifting, using partially-static
data [4] and control effects to generate efficient programs
specialized to particular format strings.

$(sprintf [%fmt "(%b,%b)"])

{

let f b = if b then "(false,true)"
else "(false,false)" in

let g b = if b then "(true,true)"
else "(true,false)" in

let h b = if b then g else f in h

Along the way we will show howmodular macros interact
with OCaml’s advanced module system.

If time permits we will show larger examples, such as the
Strymonas library for stream fusion (Figure 1).

$(of_arr << [| 0;1;2;3 |] >>

|> filter (fun x → << $x mod 2 = 0 >>)

|> fold (fun z a → <<$a::$z>>) <<[]>>)

{

let s = ref [] in
(let arr = [|0;1;2;3|] in
for i = 0 to Array.length arr - 1 do
let el = Array.get arr i in
if el mod 2 = 0 then s := el :: !s

done);
!s

Figure 1. Strymonas ported to modular macros

References
[1] Matthew Flatt. 2002. Composable and compilable macros: you want it

when?. In ICFP 2002.
[2] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-

Caml – System Description. In FLOPS 2014.
[3] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-

dakis. 2017. Stream Fusion, to Completeness. In POPL 2017. ACM.
[4] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially

static data as free extension of algebras. (January 2018). Presented at
PEPM 2018.

[5] Jeremy Yallop and Leo White. 2015. Modular Macros. (September 2015).
OCaml Users and Developers Workshop 2015.

1

	1 Modular macros
	2 The demo
	References

